
Simulink® Verification and Validation™

Reference

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Verification and Validation™ Reference

© COPYRIGHT 2004–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
September 2010 Online only New for Version 3.0 (Release 2010b)
April 2011 Online only Revised for Version 3.1 (Release 2011a)
September 2011 Online only Revised for Version 3.2 (Release 2011b)
March 2012 Online only Revised for Version 3.3 (Release 2012a)
September 2012 Online only Revised for Version 3.4 (Release 2012b)
March 2013 Online only Revised for Version 3.5 (Release 2013a)
September 2013 Online only Revised for Version 3.6 (Release 2013b)
March 2014 Online only Revised for Version 3.7 (Release 2014a)

Contents

Functions — Alphabetical List

1

Block Reference

2

Model Advisor Checks

3
Simulink Verification and Validation Checks 3-2
Simulink Verification and Validation Checks Overview . . 3-2
Modeling Standards Checks Overview 3-3
Modeling Standards for MAAB Overview 3-3
Naming Conventions Overview . 3-4
Model Architecture Overview . 3-4
Model Configuration Options Overview 3-5
Simulink Overview . 3-5
Stateflow Overview . 3-5
MATLAB Functions Overview . 3-6

DO-178C/DO-331 Checks . 3-7
DO-178C/DO-331 Checks Overview 3-8
Check safety-related optimization settings 3-10
Check safety-related diagnostic settings for solvers 3-14
Check safety-related diagnostic settings for sample time . . 3-17
Check safety-related diagnostic settings for signal data . . 3-20
Check safety-related diagnostic settings for parameters . . 3-23
Check safety-related diagnostic settings for data used for
debugging . 3-26

Check safety-related diagnostic settings for data store
memory . 3-28

v

Check safety-related diagnostic settings for type
conversions . 3-30

Check safety-related diagnostic settings for signal
connectivity . 3-32

Check safety-related diagnostic settings for bus
connectivity . 3-34

Check safety-related diagnostic settings that apply to
function-call connectivity . 3-36

Check safety-related diagnostic settings for
compatibility . 3-38

Check safety-related diagnostic settings for model
initialization . 3-40

Check safety-related diagnostic settings for model
referencing . 3-43

Check safety-related model referencing settings 3-46
Check safety-related code generation settings 3-48
Check safety-related diagnostic settings for saving 3-55
Check for blocks that do not link to requirements 3-57
Check usage of Math blocks . 3-58
Check state machine type of Stateflow charts 3-60
Check Stateflow charts for ordering of states and
transitions . 3-62

Check Stateflow debugging options 3-64
Check usage of lookup table blocks 3-66
Check MATLAB Code Analyzer messages 3-68
Check MATLAB code for global variables 3-70
Check for inconsistent vector indexing methods 3-71
Check for MATLAB Function block interfaces with
inherited properties . 3-72

Check MATLAB Function block metrics 3-74
Check for blocks not recommended for C/C++ production
code deployment . 3-76

Check Stateflow charts for uniquely defined data objects . . 3-77
Check usage of Math Operations blocks 3-78
Check usage of Signal Routing blocks 3-81
Check usage of Logic and Bit Operations blocks 3-82
Check usage of Ports and Subsystems blocks 3-84
Display model version information 3-87

IEC 61508, ISO 26262, and EN 50128 Checks 3-88
IEC 61508, ISO 26262, and EN 50128 Checks Overview . . 3-89
Display model metrics and complexity report 3-90
Check for unconnected objects . 3-92
Check for root Inports with missing properties 3-93

vi Contents

Check for MATLAB Function block interfaces with
inherited properties . 3-95

Check MATLAB Function block metrics 3-97
Check for root Inports with missing range definitions 3-99
Check for root Outports with missing range definitions . . . 3-101
Check for blocks not recommended for C/C++ production
code deployment . 3-103

Check usage of Stateflow constructs 3-104
Check state machine type of Stateflow charts 3-109
Check for model objects that do not link to requirements . . 3-111
Check for inconsistent vector indexing methods 3-113
Check MATLAB Code Analyzer messages 3-114
Check MATLAB code for global variables 3-116
Check usage of Math Operations blocks 3-117
Check usage of Signal Routing blocks 3-119
Check usage of Logic and Bit Operations blocks 3-120
Check usage of Ports and Subsystems blocks 3-122
Display configuration management data 3-125

MathWorks Automotive Advisory Board Checks 3-126
MathWorks Automotive Advisory Board Checks
Overview . 3-128

Check font formatting . 3-129
Check Transition orientations in flowcharts 3-131
Check for nondefault block attributes 3-132
Check signal line labels . 3-133
Check for propagated signal labels 3-135
Check default transition placement in Stateflow charts . . 3-136
Check return value assignments of graphical functions in
Stateflow charts . 3-137

Check entry formatting in State blocks in Stateflow
charts . 3-138

Check usage of return values from a graphical function in
Stateflow charts . 3-139

Check for pointers in Stateflow charts 3-140
Check for event broadcasts in Stateflow charts 3-141
Check transition actions in Stateflow charts 3-142
Check for MATLAB expressions in Stateflow charts 3-143
Check for indexing in blocks . 3-144
Check file names . 3-146
Check folder names . 3-147
Check for prohibited blocks in discrete controllers 3-148
Check for prohibited sink blocks . 3-149
Check positioning and configuration of ports 3-150

vii

Check for matching port and signal names 3-152
Check whether block names appear below blocks 3-153
Check for mixing basic blocks and subsystems 3-154
Check for unconnected ports and signal lines 3-155
Check position of Trigger and Enable blocks 3-156
Check usage of tunable parameters in blocks 3-157
Check Stateflow data objects with local scope 3-158
Check for Strong Data Typing with Simulink I/O 3-159
Check usage of exclusive and default states in state
machines . 3-160

Check Implement logic signals as Boolean data (vs.
double) . 3-162

Check model diagnostic parameters 3-163
Check the display attributes of block names 3-166
Check display for port blocks . 3-167
Check subsystem names . 3-168
Check port block names . 3-170
Check character usage in signal labels 3-171
Check character usage in block names 3-173
Check Trigger and Enable block names 3-175
Check for Simulink diagrams using nonstandard display
attributes . 3-176

Check MATLAB code for global variables 3-178
Check visibility of block port names 3-179
Check orientation of Subsystem blocks 3-181
Check usage of Relational Operator blocks 3-182
Check usage of Switch blocks . 3-183
Check usage of buses and Mux blocks 3-184
Check for bitwise operations in Stateflow charts 3-185
Check for comparison operations in Stateflow charts 3-187
Check for unary minus operations on unsigned integers in
Stateflow charts . 3-188

Check for equality operations between floating-point
expressions in Stateflow charts . 3-189

Check input and output settings of MATLAB Function
blocks . 3-190

Check MATLAB Function block metrics 3-192
Check for mismatches between names of Stateflow ports
and associated signals . 3-194

Check scope of From and Goto blocks 3-195

Requirements Consistency Checks 3-196
Identify requirement links with missing documents 3-197

viii Contents

Identify requirement links that specify invalid locations
within documents . 3-198

Identify selection-based links having descriptions that do
not match their requirements document text 3-199

Identify requirement links with path type inconsistent with
preferences . 3-201

ix

x Contents

1

Functions — Alphabetical
List

Advisor.authoring.CustomCheck.actionCallback

Purpose Register action callback for model configuration check

Syntax Advisor.authoring.CustomCheck.actionCallback(task)

Description Advisor.authoring.CustomCheck.actionCallback(task) is used as
the action callback function when registering custom checks that use an
XML data file to specify check behavior.

Examples This sl_customization.m file registers the action callback for
configuration parameter checks with fix actions.

function defineModelAdvisorChecks

rec = ModelAdvisor.Check('com.mathworks.Check1');

rec.Title = 'Test: Check1';

rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback(system)),

'None', 'StyleOne');

rec.TitleTips = 'Example check for check authoring infrastructure.';

% --- data file input parameters

rec.setInputParametersLayoutGrid([1 1]);

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Data File';

inputParam1.Value = 'Check1.xml';

inputParam1.Type = 'String';

inputParam1.Description = 'Name or full path of XML data file.';

inputParam1.setRowSpan([1 1]);

inputParam1.setColSpan([1 1]);

rec.setInputParameters({inputParam1});

% -- set fix operation

act = ModelAdvisor.Action;

act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback(task)));

act.Name = 'Modify Settings';

act.Description = 'Modify model configuration settings.';

rec.setAction(act);

1-2

Advisor.authoring.CustomCheck.actionCallback

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

end

See Also Advisor.authoring.DataFile |
Advisor.authoring.CustomCheck.checkCallback |
Advisor.authoring.generateConfigurationParameterDataFile

How To • “Create Check for Model Configuration Parameters”

1-3

ModelAdvisor.FactoryGroup.addCheck

Purpose Add check to folder

Syntax addCheck(fg_obj, check_ID)

Description addCheck(fg_obj, check_ID) adds checks, identified by check_ID,
to the folder specified by fg_obj, which is an instantiation of the
ModelAdvisor.FactoryGroup class.

Examples Add three checks to rec:

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

.

.

.

addCheck(rec, 'com.mathworks.sample.Check1');

addCheck(rec, 'com.mathworks.sample.Check2');

addCheck(rec, 'com.mathworks.sample.Check3');

1-4

ModelAdvisor.Group.addGroup

Purpose Add subfolder to folder

Syntax addGroup(group_obj, child_obj)

Description addGroup(group_obj, child_obj) adds a new subfolder, identified
by child_obj, to the folder specified by group_obj, which is an
instantiation of the ModelAdvisor.Group class.

Examples Add three checks to rec:

group_obj = ModelAdvisor.Group('com.mathworks.sample.group');
.
.
.
addGroup(group_obj, 'com.mathworks.sample.subgroup1');
addGroup(group_obj, 'com.mathworks.sample.subgroup2');
addGroup(group_obj, 'com.mathworks.sample.subgroup3');

1-5

ModelAdvisor.List.addItem

Purpose Add item to list

Syntax addItem(element)

Description addItem(element) adds items to the list created by the
ModelAdvisor.List constructor.

Input
Arguments

element Specifies an element to be added to a list in
one of the following:

• Element

• Cell array of elements. When you add a cell
array to a list, they form different rows in
the list.

• String

Examples subList = ModelAdvisor.List();

setType(subList, 'numbered')

addItem(subList, ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

addItem(subList, ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-6

ModelAdvisor.Paragraph.addItem

Purpose Add item to paragraph

Syntax addItem(text, element)

Description addItem(text, element) adds an element to text. element is one
of the following:

• String

• Element

• Cell array of elements

Examples Add two lines of text:

result = ModelAdvisor.Paragraph;
addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-7

ModelAdvisor.Group.addProcedure

Purpose Add procedure to folder

Syntax addProcedure(group_obj, procedure_obj)

Description addProcedure(group_obj, procedure_obj) adds a procedure,
specified by procedure_obj, to the folder group_obj. group_obj is an
instantiation of the ModelAdvisor.Group class.

Examples Add three procedures to MAG.

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAP1=ModelAdvisor.Procedure('com.mathworks.sample.procedure1');

MAP2=ModelAdvisor.Procedure('com.mathworks.sample.procedure2');

MAP3=ModelAdvisor.Procedure('com.mathworks.sample.procedure3');

addProcedure(MAG, MAP1);

addProcedure(MAG, MAP2);

addProcedure(MAG, MAP3);

1-8

ModelAdvisor.Procedure.addProcedure

Purpose Add subprocedure to procedure

Syntax addProcedure(procedure1_obj, procedure2_obj)

Description addProcedure(procedure1_obj, procedure2_obj) adds a procedure,
specified by procedure2_obj, to the procedure procedure1_obj.
procedure2_obj and procedure1_obj are instantiations of the
ModelAdvisor.Procedure class.

Examples Add three procedures to MAP.

MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');

MAP1=ModelAdvisor.Procedure('com.mathworks.sample.procedure1');

MAP2=ModelAdvisor.Procedure('com.mathworks.sample.procedure2');

MAP3=ModelAdvisor.Procedure('com.mathworks.sample.procedure3');

addProcedure(MAP, MAP1);

addProcedure(MAP, MAP2);

addProcedure(MAP, MAP3);

1-9

ModelAdvisor.FormatTemplate.addRow

Purpose Add row to table

Syntax addRow(ft_obj, {item1, item2, ..., itemn})

Description addRow(ft_obj, {item1, item2, ..., itemn}) is an optional
method that adds a row to the end of a table in the result. ft_obj is
a handle to the template object previously created. {item1, item2,
..., itemn} is a cell array of strings and objects to add to the table.
The order of the items in the array determines which column the item
is in. If you do not add data to the table, the Model Advisor does not
display the table in the result.

Note Before adding rows to a table, you must specify column titles
using the setColTitle method.

Examples Find all of the blocks in the model and create a table of the blocks:

% Create FormatTemplate object, specify table format

ft = ModelAdvisor.FormatTemplate('TableTemplate');

% Add information to the table

setTableTitle(ft, {'Blocks in Model'});

setColTitles(ft, {'Index', 'Block Name'});

% Find all the blocks in the system and add them to a table.

allBlocks = find_system(system);

for inx = 2 : length(allBlocks)

% Add information to the table

addRow(ft, {inx-1,allBlocks(inx)});

end

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-10

ModelAdvisor.Group.addTask

Purpose Add task to folder

Syntax addTask(group_obj, task_obj)

Description addTask(group_obj, task_obj) adds a task, specified by task_obj,
to the folder group_obj.group_obj is an instantiation of the
ModelAdvisor.Group class.

Examples Add three tasks to MAG.

MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');
addTask(MAG, MAT1);
addTask(MAG, MAT2);
addTask(MAG, MAT3);

1-11

ModelAdvisor.Procedure.addTask

Purpose Add task to procedure

Syntax addTask(procedure_obj, task_obj)

Description addTask(procedure_obj, task_obj) adds a task, specified by
task_obj, to procedure_obj.procedure_obj is an instantiation of the
ModelAdvisor.Procedure class.

Examples Add three tasks to MAP.

MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');

MAT1=ModelAdvisor.Task('com.mathworks.sample.task1');

MAT2=ModelAdvisor.Task('com.mathworks.sample.task2');

MAT3=ModelAdvisor.Task('com.mathworks.sample.task3');

addTask(MAP, MAT1);

addTask(MAP, MAT2);

addTask(MAP, MAT3);

1-12

Advisor.authoring.generateConfigurationParameterDataF

Purpose Generate XML data file for custom configuration parameter check

Syntax Advisor.authoring.generateConfigurationParameterDataFile(dataFile,
source)

Advisor.authoring.generateConfigurationParameterDataFile(dataFile,
source,Name,Value)

Description Advisor.authoring.generateConfigurationParameterDataFile(dataFile,
source) generates an XML data file named dataFile specifying the
configuration parameters for source. The data file uses tagging to
specify the configuration parameter settings you want. When you
create a check for configuration parameters, you use the data file. Each
model configuration parameter specified in the data file is a subcheck.

Advisor.authoring.generateConfigurationParameterDataFile(dataFile,
source,Name,Value) generates an XML data file named dataFile
specifying the configuration parameters for source. It also specifies
additional options by one or more optional Name,Value arguments.
The data file uses tagging to specify the configuration parameter
settings you want. When you create a check for configuration
parameters, you use the data file. Each model configuration parameter
specified in the data file is a subcheck.

Input
Arguments

dataFile - Name of data file to create
string

Name of XML data file to create, specified as a string.

Example: ’myDataFile.xml’

source - Name of model or configuration set
string | Simulink.ConfigSet

Name of model or Simulink.ConfigSet object used to specify
configuration parameters

Example: ’vdp’

1-13

Advisor.authoring.generateConfigurationParameterDataFile

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Pane', 'Solver', 'FixValues', true specifies a
dataFile with solver pane configuration parameters and fix tagging.

’Pane’ - Limit the configuration parameters in the dataFile
Solver | Data Import/Export | Optimization | Diagnostics |
Hardware Implementation | Model Referencing | Code Generation

Option to limit the configuration parameters in the data file to the
pane specified as the comma-separated pair of 'Pane' and one of the
following:

• Solver

• Data Import/Export

• Optimization

• Diagnostics

• Hardware Implementation

• Model Referencing

• Code Generation

Example: 'Pane','Solver' limits the dataFile to configuration
parameters on the solver pane.

Data Types
char

’FixValues’ - Create fix tagging in the dataFile
false | true

1-14

Advisor.authoring.generateConfigurationParameterDataF

Setting FixValues to true provides the dataFile with fix tagging.
When you generate a custom configuration parameter check using a
dataFile with fix tagging, each configuration parameter subcheck has
a fix action. Specified as the comma-separated pair of 'FixValues'
and either true or false.

Example: 'FixValues,true specifies fix tagging in the dataFile.

Data Types
logical

Examples Create data file for configuration parameter check

Create a data file with all the configuration parameters. You use the
data file to create a configuration parameter.

model = 'vdp';
dataFile = 'myDataFile.xml';
Advisor.authoring.generateConfigurationParameterDataFile(...

dataFile, model);

Data file myDataFile.xml has tagging specifying subcheck information
for each configuration parameter. myDataFile.xml specifies the
configuration parameters settings you want. The following specifies
XML tagging for configuration parameter AbsTol. If the configuration
parameter is set to 1e-6, the configuration parameter subcheck
specified in myDataFile.xml passes.

<!-- Absolute tolerance: (AbsTol)-->
<PositiveModelParameterConstraint>

<parameter>AbsTol</parameter>
<value>1e-6</value>
</PositiveModelParameterConstraint>

To specify configuration parameter settings you do not want, see “Data
File for Configuration Parameter Check”.

1-15

Advisor.authoring.generateConfigurationParameterDataFile

Create data file for solver pane configuration parameter
check with fix action

Create a data file with configuration parameters for the solver pane.
You use the data file to create a solver pane configuration parameter
check with fix actions.

model = 'vdp';
dataFile = 'myDataFile.xml';
Advisor.authoring.generateConfigurationParameterDataFile(...

dataFile, model, 'Pane', 'Solver', 'FixValues', true);

Data file myDataFile.xml has tagging specifying subcheck information
for each configuration parameter. myDataFile.xml specifies the
configuration parameters settings that you want. The following
specifies XML tagging for configuration parameter AbsTol. If the
configuration parameter is set to 1e-6, the configuration parameter
subcheck specified in myDataFile.xml passes. If the subcheck does not
pass, the check fix action modifies the configuration parameter to 1e-6.

<!-- Absolute tolerance: (AbsTol)-->
<PositiveModelParameterConstraint>

<parameter>AbsTol</parameter>
<value>1e-6</value>
<fixvalue>1e-6</fixvalue>
</PositiveModelParameterConstraint>

To specify configuration parameter settings you do not want, see “Data
File for Configuration Parameter Check”.

Related
Examples

• “Create Check for Model Configuration Parameters”

Concepts • “Data File for Configuration Parameter Check”

1-16

Advisor.authoring.CustomCheck

Purpose Define custom check

Description Instances of the Advisor.authoring.CustomCheck class provide a
container for static methods used as callback functions when defining a
configuration parameter check. The configuration parameter check is
defined in an XML data file.

Methods actionCallback Register action callback for model
configuration check

checkCallback Register check callback for model
configuration check

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB® Programming Fundamentals documentation.

See Also Advisor.authoring.DataFile |
Advisor.authoring.generateConfigurationParameterDataFile

How To • “Create Check for Model Configuration Parameters”

1-17

Advisor.authoring.DataFile

Purpose Interact with data file for model configuration checks

Description The Advisor.authoring.DataFile class provides a container for a
static method used when interacting with the data file for configuration
parameter checks.

Methods validate Validate XML data file used for
model configuration check

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also Advisor.authoring.CustomCheck |
Advisor.authoring.generateConfigurationParameterDataFile

How To • “Create Check for Model Configuration Parameters”

1-18

cv.cvdatagroup.allNames

Purpose Get names of all models associated with cvdata objects in
cv.cvdatagroup

Syntax models = allNames(cvdg)

Description models = allNames(cvdg) returns a cell array of strings identifying
all model names associated with the cvdata objects in cvdg, an
instantiation of the cv.cvdatagroup class.

Examples Add three cvdata objects to cvdg and return a cell array of model names:

a = cvdata;
b = cvdata;
c = cvdata;
cvdg = cv.cvdatagroup;
add (cvdg, a, b, c);
model_names = allNames(cvdg)

1-19

Advisor.authoring.CustomCheck.checkCallback

Purpose Register check callback for model configuration check

Syntax Advisor.authoring.CustomCheck.checkCallback(system)

Description Advisor.authoring.CustomCheck.checkCallback(system) is used as
the check callback function when registering custom checks that use an
XML data file to specify check behavior.

Examples This sl_customization.m file registers a configuration parameter check
using Advisor.authoring.CustomCheck.checkCallback(system).

function defineModelAdvisorChecks

rec = ModelAdvisor.Check('com.mathworks.Check1');

rec.Title = 'Test: Check1';

rec.setCallbackFcn(@(system)(Advisor.authoring.CustomCheck.checkCallback(system)),

'None', 'StyleOne');

rec.TitleTips = 'Example check for check authoring infrastructure.';

% --- data file input parameters

rec.setInputParametersLayoutGrid([1 1]);

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Data File';

inputParam1.Value = 'Check1.xml';

inputParam1.Type = 'String';

inputParam1.Description = 'Name or full path of XML data file.';

inputParam1.setRowSpan([1 1]);

inputParam1.setColSpan([1 1]);

rec.setInputParameters({inputParam1});

% -- set fix operation

act = ModelAdvisor.Action;

act.setCallbackFcn(@(task)(Advisor.authoring.CustomCheck.actionCallback(task)));

act.Name = 'Modify Settings';

act.Description = 'Modify model configuration settings.';

rec.setAction(act);

1-20

Advisor.authoring.CustomCheck.checkCallback

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

end

See Also Advisor.authoring.DataFile |
Advisor.authoring.CustomCheck.actionCallback |
Advisor.authoring.generateConfigurationParameterDataFile

How To • “Create Check for Model Configuration Parameters”

1-21

complexityinfo

Purpose Retrieve cyclomatic complexity coverage information from cvdata object

Syntax complexity = complexityinfo(cvdo, object)

Description complexity = complexityinfo(cvdo, object) returns complexity
coverage results from the cvdata object cvdo for the model component
object.

Input
Arguments

cvdo

cvdata object

object

The object argument specifies an object in the model or Stateflow®

chart that received decision coverage. Valid values for object include
the following:

Object Specification Description

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink® API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object from
a singly instantiated Stateflow chart

{BlockPath, sfID} Cell array with the path to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

1-22

complexityinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or subchart and a Stateflow
object API handle contained in that
chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

Output
Arguments

complexity

If cvdo does not contain cyclomatic complexity coverage results for
object, complexity is empty.

If cvdo contains cyclomatic complexity coverage results for object,
complexity is a two-element vector of the form [total_complexity
local_complexity]:

total_complexity Cyclomatic complexity coverage for
object and its descendants (if any)

local_complexity Cyclomatic complexity coverage for
object

If object has variable-size signals, complexity also contains the
variable complexity.

Examples Open the sldemo_fuelsys model and create the test specification
object testObj. Enable decision, condition, and MCDC coverage
for sldemo_fuelsys and execute testObj using cvsim. Use
complexityinfo to retrieve cyclomatic complexity results for the
Throttle subsystem. The Throttle subsystem itself does not record
cyclomatic complexity coverage results, but the contents of the
subsystem do record cyclomatic complexity coverage.

1-23

complexityinfo

mdl = 'sldemo_fuelsys';
open_system(mdl);
testObj = cvtest(mdl)
testObj.settings.decision = 1;
testObj.settings.condition = 1;
testObj.settings.mcdc = 1;
data = cvsim(testObj);
blk_handle = get_param([mdl, ...

'/Engine Gas Dynamics/Throttle & Manifold/Throttle'],...
'Handle');

coverage = complexityinfo(data, blk_handle);
coverage

Alternatives Use the Coverage Settings dialog box to collect and display cyclomatic
complexity coverage results in the coverage report:

1 Open the model.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select:

• Decision

• Condition

• MCDC

5 On the Reporting tab, click HTML Settings.

6 In the HTML Settings dialog box, select:

• Include cyclomatic complexity numbers in summary

• Include cyclomatic complexity numbers in block details

7 Click OK to close the HTML Settings dialog box and save your
changes.

1-24

complexityinfo

8 Click OK to close the Coverage Settings dialog box and save your
changes.

9 Simulate the model and review the results in the HTML report.

See Also conditioninfo | decisioninfo | cvsim | getCoverageInfo |
mcdcinfo | sigrangeinfo | sigsizeinfo | tableinfo

How To • “Cyclomatic Complexity”

1-25

conditioninfo

Purpose Retrieve condition coverage information from cvdata object

Syntax coverage = conditioninfo(cvdo, object)
coverage = conditioninfo(cvdo, object, ignore_descendants)
[coverage, description] = conditioninfo(cvdo, object)

Description coverage = conditioninfo(cvdo, object) returns condition
coverage results from the cvdata object cvdo for the model component
specified by object.

coverage = conditioninfo(cvdo, object, ignore_descendants)
returns condition coverage results for object, depending on the value
of ignore_descendants.

[coverage, description] = conditioninfo(cvdo, object) returns
condition coverage results and textual descriptions of each condition
in object.

Input
Arguments

cvdo

cvdata object

object

An object in the Simulink model or Stateflow diagram that receives
decision coverage. Valid values for object are as follows:

BlockPath Full path to a Simulink model or
block

BlockHandle Handle to a Simulink model or
block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

1-26

conditioninfo

{BlockPath, sfID} Cell array with the path to
a Stateflow chart or atomic
subchart and the ID of an
object contained in that chart or
subchart

{BlockPath, sfObj} Cell array with the path to
a Stateflow chart or atomic
subchart and a Stateflow object
API handle contained in that
chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the
ID of an object contained in that
chart or subchart

ignore_descendants

Logical value that specifies whether to ignore the coverage of
descendant objects

1 to ignore coverage of descendant objects
0 (default) to collect coverage of descendant objects

Output
Arguments

coverage

The value of coverage is a two-element vector of form
[covered_outcomes total_outcomes]. coverage is empty if cvdo does
not contain condition coverage results for object. The two elements are:

covered_outcomes Number of condition outcomes
satisfied for object

total_outcomes Total number of condition
outcomes for object

description

1-27

conditioninfo

A structure array with the following fields:

text String describing a condition or
the block port to which it applies

trueCnts Number of times the condition
was true in a simulation

falseCnts Number of times the condition
was false in a simulation

Examples The following example opens the slvnvdemo_cv_small_controller
example model, creates the test specification object testObj, enables
condition coverage for testObj, and executes testObj. Then retrieve
the condition coverage results for the Logic block (in the Gain
subsystem) and determine its percentage of condition outcomes covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.condition = 1;
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = conditioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives Use the Coverage Settings dialog box to collect condition coverage for a
model:

1 Open the model for which you want to collect condition coverage.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select Condition.

5 On the Results and Reporting tabs, specify the output you need.

1-28

conditioninfo

6 Click OK to close the Coverage Settings dialog box and save your
changes.

7 Simulate the model and review the results.

See Also complexityinfo | cvsim | decisioninfo | getCoverageInfo |
mcdcinfo | overflowsaturationinfo | sigrangeinfo | sigsizeinfo
| tableinfo

How To • “Condition Coverage (CC)”

1-29

cv.cvdatagroup

Purpose Collection of cvdata objects

Description Instances of this class contain a collection of cvdata objects. Each
cvdata object contains coverage results for a particular model in the
model hierarchy.

Construction cv.cvdatagroup Create collection of cvdata objects
for model reference hierarchy

Methods allNames Get names of all models
associated with cvdata objects in
cv.cvdatagroup

get Get cvdata object

getAll Get all cvdata objects

Properties name cv.cvdatagroup object name

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

1-30

cv.cvdatagroup

Purpose Create collection of cvdata objects for model reference hierarchy

Syntax cvdg = cv.cvdatagroup(cvdo1, cvdo2,...)

Description cvdg = cv.cvdatagroup(cvdo1, cvdo2,...) creates an instantiation
of the cv.cvdatagroup class (cvdg) that contains the cvdata objects
cvdo1, cvdo2, etc. A cvdata object contains results of the simulation
runs.

Examples Create an instantiation of the cv.cvdatagroup class and add two
cvdata objects to it:

a = cvdata;
b = cvdata;
cvdg = cv.cvdatagroup(a, b);

1-31

cvexit

Purpose Exit model coverage environment

Syntax cvexit

Description cvexit exits the model coverage environment. Issuing this command
closes the Coverage Display window and removes coloring from a block
diagram that displays its model coverage results.

1-32

cvhtml

Purpose Produce HTML report from model coverage objects

Syntax cvhtml(file, cvdo)
cvhtml(file, cvdo1, cvdo2, ...)
cvhtml(file, cvdo1, cvdo2, ..., options)
cvhtml(file, cvdo1, cvdo2, ..., options, detail)

Description cvhtml(file, cvdo) creates an HTML report of the coverage results
in the cvdata or cv.cvdatagroup object cvdo when you run model
coverage in simulation. cvhtml saves the coverage results in file. The
model must be open when you use cvhtml to generate its coverage
report.

cvhtml(file, cvdo1, cvdo2, ...) creates a combined report
of several cvdata objects. The results from each object appear in
a separate column of the HTML report. Each cvdata object must
correspond to the same root model or subsystem. Otherwise, the
function fails.

cvhtml(file, cvdo1, cvdo2, ..., options) creates a combined
report of several cvdata objects using the report options specified by
options.

cvhtml(file, cvdo1, cvdo2, ..., options, detail) creates a
combined coverage report for several cvdata objects and specifies the
detail level of the report with the value of detail.

Input
Arguments

cvdo

A cv.cvdatagroup object

detail

Specifies the level of detail in the report. Set detail to an integer from
0 to 3. Greater numbers for detail indicate greater detail.

Default: 2

file

1-33

cvhtml

String specifying the HTML file in the MATLAB current folder where
cvhtml stores the results

Default: []

options

Specify the report options that you specify in options:

• To enable an option, set it to 1 (e.g., '-hTR=1').

• To disable an option, set it to 0 (e.g., '-bRG=0').

• To specify multiple report options, list individual options in
a single options string separated by commas or spaces (e.g.,
'-hTR=1 -bRG=0 -scm=0').

The following table lists all the options:

Option Description Default

-sRT Show report on

-aTS Include each test in the model summary on

-bRG Produce bar graphs in the model summary on

-bTC Use two color bar graphs (red, blue) on

-hTR Display hit/count ratio in the model
summary

off

-nFC Do not report fully covered model objects off

-scm Include cyclomatic complexity numbers
in summary

on

-bcm Include cyclomatic complexity numbers
in block details

on

-xEv Filter Stateflow events from report off

1-34

cvhtml

Examples Make sure you have write access to the default MATLAB folder. Create
a cumulative coverage report for the slvnvdemo_cv_small_controller
mode and save it as ratelim_coverage.html:

model = 'slvnvdemo_cv_small_controller';
open_system(model);
cvt = cvtest(model);
cvd = cvsim(cvt);
outfile = 'ratelim_coverage.html';
cvhtml(outfile, cvd);

Alternatives Use the Coverage Settings dialog box to create a model coverage report
in an HTML file:

1 Open the model for which you want a model coverage report.

2 In the Simulink Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 On the Report tab, select Generate HTML report.

5 Click OK to close the Coverage Settings dialog box and save your
changes.

6 Simulate the model and review the generated report.

See Also cv.cvdatagroup | cvmodelview | cvsim

How To • “Create HTML Reports with cvhtml”

1-35

cvload

Purpose Load coverage tests and stored results into memory

Syntax [tests, data] = cvload(filename)
[tests, data] = cvload(filename, restoretotal)

Description [tests, data] = cvload(filename) loads the tests and data stored
in the text file filename.cvt. tests is a cell array of cvtest objects
that are loaded. data is a cell array of cvdata objects that are loaded.
data has the same size as tests, but if a particular test has no results,
data can contain empty elements.

[tests, data] = cvload(filename, restoretotal) restores or
clears the cumulative results from prior runs, depending on the value of
restoretotal. If restoretotal is 1, cvload restores the cumulative
results from prior runs. If restoretotal is unspecified or 0, cvload
clears the model’s cumulative results.

The following are special considerations for using the cvload command:

• If a model with the same name exists in the coverage database, the
software loads only the compatible results that reference the existing
model to prevent duplication.

• If the Simulink models referenced from the file are open but do not
exist in the coverage database, the coverage tool resolves the links to
the existing models.

• When you are loading several files that reference the same model,
the software loads only the results that are consistent with the
earlier files.

Examples Store coverage results in cvtest and cvdata objects:

[test_objects, data_objects] = cvload(test_results, 1);

See Also cvsave

How To • “Load Stored Coverage Test Results with cvload”

1-36

cvmodelview

Purpose Display model coverage results with model coloring

Syntax cvmodelview(cvdo)

Description cvmodelview(cvdo) displays coverage results from the cvdata object
cvdo by coloring the objects in the model that have model coverage
results.

Examples Open the slvnvdemo_cv_small_controller example model, create the
test specification object testObj, and execute testObj to collect model
coverage. Run cvmodelview to color the model objects for which you
collect model coverage information:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
data = cvsim(testObj)
cvmodelview(data)

Alternatives Use the Coverage Settings dialog box to display model coverage results
by coloring objects:

1 Open the model.

2 Select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 On the Results tab, select Display coverage results using model
coloring.

5 Click OK to close the Coverage Settings dialog box and save your
changes.

6 Simulate the model and review the results.

See Also cvhtml | cvsim

1-37

cvmodelview

How To • “Enable Coverage Highlighting”

•

1-38

cvsave

Purpose Save coverage tests and results to file

Syntax cvsave(filename, model)
cvsave(filename, cvto1, cvto2, ...)
cvsave(filename, cell_array{ :})

Description cvsave(filename, model) saves all the tests (cvtest objects) and
results (cvdata objects) related to model in the text file filename.cvt.
model is a handle to or name of a Simulink model.

cvsave(filename, cvto1, cvto2, ...) saves multiple cvtest
objects in the text file filename.cvt. cvsave also saves information
about any referenced models.

cvsave(filename, cell_array{ :}) saves the test results stored in
each element of cell_array to the file filename.cvt. Each element in
cell_array contains test results for a cvdata object.

Input
Arguments

filename

String containing the name of the file in which to save the data. cvsave
appends the extension .cvt to the string when saving the file.

model

Handle to a Simulink model

cvto

cvtest object

cell_array

Cell array of cvtest objects

Examples Save coverage results for the slvnvdemo_cv_small_controller model
in ratelim_testdata.cvt:

model = 'slvnvdemo_cv_small_controller';

1-39

cvsave

open_system(model);
cvt = cvtest(model);
cvd = cvsim(cvt);
cvsave('ratelim_testdata', model);

Save cumulative coverage results for the Adjustable Rate Limiter
subsystem in the slvnvdemo_ratelim_harness model from two
simulations:

% Open model and subsystem
mdl = 'slvnvdemo_ratelim_harness';
mdl_subsys = ...
'slvnvdemo_ratelim_harness/Adjustable Rate Limiter';

open_system(mdl);
open_system(mdl_subsys);

% Create data files
t_gain = (0:0.02:2.0)';
u_gain = sin(2*pi*t_gain);
t_pos = [0;2];
u_pos = [1;1];
t_neg = [0;2];
u_neg = [-1;-1];
save('within_lim.mat','t_gain','u_gain','t_pos','u_pos', ...
't_neg', 'u_neg');

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];
save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos', ...
't_neg', 'u_neg');

% Specify coverage options in cvtest object

1-40

cvsave

testObj1 = cvtest(mdl_subsys);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;
testObj1.settings.condition = 1;
testObj1.settings.decision = 1;

testObj2 = cvtest(mdl_subsys);
testObj2.label = ...
'Rising gain that temporarily exceeds slew limit';

testObj2.setupCmd = 'load(''rising_gain.mat'');';
testObj2.settings.mcdc = 1;
testObj2.settings.condition = 1;
testObj2.settings.decision = 1;

% Simulate the model with both cvtest objects
[dataObj1,simOut1] = cvsim(testObj1);
[dataObj2,simOut2] = cvsim(testObj2,[0 2]);

cumulative = dataObj1+dataObj2;
cvsave('ratelim_testdata',cumulative);

As in the preceding example, save cumulative coverage results for the
Adjustable Rate Limiter subsystem in the slvnvdemo_ratelim_harness
model from two simulations. Save the results in a cell array and then
save the data to a file:

% Open model and subsystem
mdl = 'slvnvdemo_ratelim_harness';
mdl_subsys = ...
'slvnvdemo_ratelim_harness/Adjustable Rate Limiter';

open_system(mdl);
open_system(mdl_subsys);

% Create data files
t_gain = (0:0.02:2.0)';

1-41

cvsave

u_gain = sin(2*pi*t_gain);
t_pos = [0;2];
u_pos = [1;1];
t_neg = [0;2];
u_neg = [-1;-1];
save('within_lim.mat','t_gain','u_gain','t_pos','u_pos', ...
't_neg', 'u_neg');

t_gain = [0;2];
u_gain = [0;4];
t_pos = [0;1;1;2];
u_pos = [1;1;5;5]*0.02;
t_neg = [0;2];
u_neg = [0;0];
save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos', ...
't_neg', 'u_neg');

% Specify coverage options in cvtest object
testObj1 = cvtest(mdl_subsys);
testObj1.label = 'Gain within slew limits';
testObj1.setupCmd = 'load(''within_lim.mat'');';
testObj1.settings.mcdc = 1;
testObj1.settings.condition = 1;
testObj1.settings.decision = 1;

testObj2 = cvtest(mdl_subsys);
testObj2.label = ...
'Rising gain that temporarily exceeds slew limit';

testObj2.setupCmd = 'load(''rising_gain.mat'');';
testObj2.settings.mcdc = 1;
testObj2.settings.condition = 1;
testObj2.settings.decision = 1;

% Simulate the model with both cvtest objects
[dataObj1,simOut1] = cvsim(testObj1);
[dataObj2,simOut2] = cvsim(testObj2,[0 2]);

1-42

cvsave

% Save the results in the cell array
cov_results{1} = dataObj1;
cov_results{2} = dataObj2;

% Save the results to a file
cvsave('ratelim_testdata', cov_results{ :});

Alternatives Use the Coverage Settings dialog box to save cumulative coverage
results for a model:

1 Open the model for which you want to save cumulative coverage
results.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 On the Results tab:

a Select Save cumulative results in workspace variable.

b Select Save last run in workspace variable.

5 Click OK to close the Coverage Settings dialog box and save your
changes.

6 Simulate the model and review the results.

See Also cvload

How To • “Save Test Runs to a File with cvsave”

1-43

cvsim

Purpose Simulate and return model coverage results for test objects

Syntax cvdo = cvsim(cvto)
[cvdo,simOut] = cvsim(cvto,Name1,Value1,Name2,Value2,...)
[cvdo,simOut] = cvsim(cvto,ParameterStruct)
[cvdo1,cvdo2,...,simOut] = cvsim(cvto1,cvto2,...)

Description cvdo = cvsim(cvto) simulates the model and returns the coverage
results for the cvtest object, cvto. cvsim saves the coverage results
in the cvdata object, cvdo. However, when recording coverage for
multiple models in a hierarchy, cvsim returns the coverage results in
a cv.cvdatagroup object.

[cvdo,simOut] = cvsim(cvto,Name1,Value1,Name2,Value2,...)
specifies the model parameters and simulates the model. cvsim returns
the coverage results in the cvdata object, cvdo, and returns the
simulation outputs in the Simulink.SimulationOutput object, simOut.

[cvdo,simOut] = cvsim(cvto,ParameterStruct) sets the model
parameters specified in a structure ParameterStruct, simulates the
model, returns the coverage results in cvdo, and returns the simulation
outputs in simOut.

[cvdo1,cvdo2,...,simOut] = cvsim(cvto1,cvto2,...) simulates
the model and returns the coverage results for the test objects, cvto1,
cvto2, cvdo1 contains the coverage results for cvto1, cvdo2
contains the coverage results for cvto2, and so on.

Note Even if you have not enabled coverage recording for the model,
you can execute the cvsim command to record coverage for your model.

Input
Arguments

cvto

cvtest object that specifies coverage options for the simulation

1-44

cvsim

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’ParameterName’

Name of the model parameter to be specified for simulation

’ParameterValue’

Value of the model parameter

Note For a complete list of model parameters, see “Model Parameters”
in the Simulink documentation.

Output
Arguments

cvdo

cvdata object

simOut

A Simulink.SimulationOutput object that contains the simulation
outputs.

Examples Open the sldemo_engine example model, create the test object,
set the model parameters, and simulate the model. cvsim returns
the coverage data in cvdo and the simulation outputs in the
Simulink.SimulationOutput object, simOut:

model = 'sldemo_engine';

open_system(model);

testObj = cvtest(model); % Get test data

testObj.settings.decision = 1;

1-45

cvsim

paramStruct.AbsTol = '1e-5';

paramStruct.SaveState = 'on';

paramStruct.StateSaveName = 'xoutNew';

paramStruct.SaveOutput = 'on';

paramStruct.OutputSaveName = 'youtNew';

[cvdo,simOut] = cvsim(testObj,paramStruct); % Get coverage

cvhtml('CoverageReport.html', cvdo); % Create HTML Report

See Also cv.cvdatagroup | cvtest | sim

1-46

cvtest

Purpose Create model coverage test specification object

Syntax cvto = cvtest(root)
cvto = cvtest(root, label)
cvto = cvtest(root, label, setupcmd)

Description cvto = cvtest(root) creates a test specification object with the
handle cvto. Simulate cvto with the cvsim command.

cvto = cvtest(root, label) creates a test object with the label
label, which is used for reporting results.

cvto = cvtest(root, label, setupcmd) creates a test object with
the setup command setupcmd.

Input
Arguments

root

Name or handle for a Simulink model or a subsystem. Only the
specified model or subsystem and its descendants are subject to model
coverage testing.

label

Label for test object

setupcmd

Setup command for creating test object. The setup command is executed
in the base MATLAB workspace just prior to running the simulation.
This command is useful for loading data prior to a test.

Output
Arguments

cvto

A test specification object with the following structure.

Field Description

id Read-only internal ID

modelcov Read-only internal ID

1-47

cvtest

Field Description

rootPath Name of system or subsystem for analysis

label String used when reporting results

setupCmd Command executed in base workspace
prior to simulation

settings.condition Set to 1 for condition coverage.

settings.decision Set to 1 for decision coverage.

settings.
designverifier

Set to 1 for coverage for Simulink Design
Verifier™ blocks.

settings.mcdc Set to 1 for MCDC coverage.

settings.sigrange Set to 1 for signal range coverage.

settings.sigsize Set to 1 for signal size coverage.

settings.tableExec Set to 1 for lookup table coverage.

modelRefSettings.
enable

• 'off' — Disables coverage for all
referenced models.

• 'all' or on— Enables coverage for all
referenced models.

• 'filtered' — Enables coverage only
for referenced models not listed in the
excludedModels subfield.

modelRefSettings.
excludeTopModel

Set to 1 to exclude coverage for the top
model

modelRefSettings.
excludedModels

String specifying a comma-separated list
of referenced models for which coverage
is disabled.

emlSettings.
enableExternal

Set to 1 to enable coverage for external
program files called by MATLAB
functions in your model.

1-48

cvtest

Field Description

options.
forceBlockReduction

Set to 1 to override the Simulink Block
reduction parameter if it is enabled.

filter.fileName String specifying name of coverage filter
file, if you have excluded objects from
coverage recording. See “Coverage Filter
Rules and Files”.

Examples Create a cvtest object for the Adjustable Rate Limiter block in the
slvnvdemo_ratelim_harness model. Simulate and get coverage data
using cvsim.

open_system('slvnvdemo_ratelim_harness');
testObj = cvtest(['slvnvdemo_ratelim_harness', ...
'/Adjustable Rate Limiter']);

testObj.label = 'Gain within slew limits';
testObj.setupCmd = ...
'load(''slvnvdemo_ratelim_harness_data.mat'');';

testObj.settings.decision = 1;
testObj.settings.overflowsaturation = 1;
cvdo = cvsim(testObj);

See Also cvsim | cv.cvdatagroup

How To • “Create Tests with cvtest”

1-49

decisioninfo

Purpose Retrieve decision coverage information from cvdata object

Syntax coverage = decisioninfo(cvdo, object)
coverage = decisioninfo(cvdo, object, ignore_descendants)
[coverage, description] = decisioninfo(cvdo, object)

Description coverage = decisioninfo(cvdo, object) returns decision coverage
results from the cvdata object cvdo for the model component specified
by object.

coverage = decisioninfo(cvdo, object, ignore_descendants)
returns decision coverage results for object, depending on the value
of ignore_descendants.

[coverage, description] = decisioninfo(cvdo, object) returns
decision coverage results and text descriptions of decision points
associated with object.

Input
Arguments

cvdo

cvdata object

object

The object argument specifies an object in the model or Stateflow
chart that received decision coverage. Valid values for object include
the following:

Object Specification Description

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object from
a singly instantiated Stateflow chart

1-50

decisioninfo

Object Specification Description

{BlockPath, sfID} Cell array with the path to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or subchart and a Stateflow
object API handle contained in that
chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

ignore_descendants

Specifies to ignore the coverage of descendant objects if
ignore_descendants is set to 1.

Output
Arguments

coverage

The value of coverage is a two-element vector of the form
[covered_outcomes total_outcomes].coverage is empty if cvdo does
not contain decision coverage results for object. The two elements are:

covered_outcomes Number of decision outcomes
satisfied for object

total_outcomes Number of decision outcomes for
object

description

description is a structure array containing the following fields:

1-51

decisioninfo

decision.text String describing a decision point,
e.g., 'U > LL'

decision.outcome.text String describing a decision
outcome, i.e., 'true' or 'false'

decision.outcome.
executionCount

Number of times a decision
outcome occurred in a simulation

Examples Open the slvnvdemo_cv_small_controller model and create the
test specification object testObj. Enable decision coverage for
slvnvdemo_cv_small_controller and execute testObj using cvsim.
Use decisioninfo to retrieve the decision coverage results for the
Saturation block and determine the percentage of decision outcomes
covered:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
testObj = cvtest(mdl)
testObj.settings.decision = 1;
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Saturation'], 'Handle');
cov = decisioninfo(data, blk_handle)
percent_cov = 100 * cov(1) / cov(2)

Alternatives Use the Coverage Settings dialog box to collect and display decision
coverage results:

1 Open the model.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select Decision.

5 On the Results and Reporting tabs, specify the output you need.

1-52

decisioninfo

6 Click OK to close the Coverage Settings dialog box and save your
changes.

7 Simulate the model and review the results.

See Also complexityinfo | conditioninfo | cvsim | getCoverageInfo |
mcdcinfo | overflowsaturationinfo | sigrangeinfo | sigsizeinfo
| tableinfo

How To • “Decision Coverage (DC)”

1-53

cv.cvdatagroup.get

Purpose Get cvdata object

Syntax get(cvdg, model_name)

Description get(cvdg, model_name) returns the cvdata object in the
cv.cvdatagroup object cvdg that corresponds to the model specified
in model_name.

Examples Get a cvdata object from the specified Simulink model:

get(cvdg, 'slvnvdemo_cv_small_controller');

1-54

cv.cvdatagroup.getAll

Purpose Get all cvdata objects

Syntax getAll(cvdo)

Description getAll(cvdo) returns all cvdata objects in the cv.cvdatagroup object
cvdo.

Examples Return all cvdata objects from the specified Simulink model:

getAll(cvdg, 'slvnvdemo_cv_small_controller');

1-55

getCoverageInfo

Purpose Retrieve coverage information for Simulink Design Verifier blocks
from cvdata object

Syntax [coverage, description] = getCoverageInfo(cvdo, object)
[coverage, description] = getCoverageInfo(cvdo,
object, metric)
[coverage, description] = getCoverageInfo(cvdo,
object, metric,

ignore_descendants)

Description [coverage, description] = getCoverageInfo(cvdo, object)
collects Simulink Design Verifier coverage for object, based on
coverage results in cvdo. object is a handle to a block, subsystem,
or Stateflow chart. getCoverageData returns coverage data only for
Simulink Design Verifier library blocks in object’s hierarchy.

[coverage, description] = getCoverageInfo(cvdo, object,
metric) returns coverage data for the block type specified in metric.
If object does not match the block type, getCoverageInfo does not
return data.

[coverage, description] = getCoverageInfo(cvdo, object,
metric, ignore_descendants) returns coverage data about
object, omitting coverage data for its descendant objects if
ignore_descendants equals 1.

Input
Arguments

cvdo

cvdata object

object

In the model or Stateflow chart, object that received Simulink Design
Verifier coverage. The following are valid values for object.

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

1-56

getCoverageInfo

slObj Handle to a Simulink API object

sfID Stateflow ID from a singly instantiated
Stateflow chart

sfObj Handle to a Stateflow API object from
a singly instantiated Stateflow chart

{BlockPath, sfID} Cell array with the path to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or atomic subchart and a
Stateflow object API handle contained
in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

metric

cvmetric.Sldv enumeration object with values that correspond to
Simulink Design Verifier library blocks.

test Test Objective block

proof Proof Objective block

condition Test Condition block

assumption Proof Assumption block

ignore_descendants

Boolean value that specifies to ignore the coverage of descendant objects
if set to 1.

1-57

getCoverageInfo

Output
Arguments

coverage

Two-element vector of the form [covered_outcomes total_outcomes].

covered_outcomes Number of test objectives satisfied
for object

total_outcomes Total number of test objectives
for object

coverage is empty if cvdo does not contain decision coverage results
for object.

description

Structure array containing descriptions of each test objective, and
descriptions and execution counts for each outcome within object.

Examples Collect and display coverage data for the Test Objective block named
True in the sldvdemo_debounce_testobjblks model:

mdl = 'sldvdemo_debounce_testobjblks';

open_system(mdl)

testObj = cvtest(mdl)

testObj.settings.designverifier = 1;

data = cvsim(testObj)

blk_handle = get_param([mdl, '/True'], 'Handle');

getCoverageInfo(data, blk_handle)

Alternatives Use the Coverage Settings dialog box to collect and display coverage
results for Simulink Design Verifier library blocks:

1 Open the model.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select Simulink Design Verifier.

1-58

getCoverageInfo

5 Click OK to close the Coverage Settings dialog box and save your
changes.

6 Simulate the model and review the results.

See Also complexityinfo | conditioninfo | cvsim | decisioninfo |
mcdcinfo | overflowsaturationinfo | sigrangeinfo | sigsizeinfo
| tableinfo

How To • “Simulink Design Verifier Coverage”

1-59

ModelAdvisor.Table.getEntry

Purpose Get table cell contents

Syntax content = getEntry(table, row, column)

Description content = getEntry(table, row, column) gets the contents of the
specified cell.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

row An integer specifying the row

column An integer specifying the column

Output
Arguments

content An element object or object array specifying
the content of the table entry

Examples Get the content of the table cell in the third column, third row:

table1 = ModelAdvisor.Table(4, 4);
.
.
.
content = getEntry(table1, 3, 3);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-60

ModelAdvisor.Check.getID

Purpose Return check identifier

Syntax id = getID(check_obj)

Description id = getID(check_obj) returns the ID of the check check_obj. id is a
unique string that identifies the check.

You create this unique identifier when you create the check. This unique
identifier is the equivalent of the ModelAdvisor.Check ID property.

See Also “Model Advisor Customization”

How To • “Define Custom Checks”

• “Authoring Checks”

1-61

mcdcinfo

Purpose Retrieve modified condition/decision coverage information from cvdata
object

Syntax coverage = mcdcinfo(cvdo, object)
coverage = mcdcinfo(cvdo, object, ignore_descendants)
[coverage, description] = mcdcinfo(cvdo, object)

Description coverage = mcdcinfo(cvdo, object) returns modified
condition/decision coverage (MCDC) results from the cvdata object
cvdo for the model component specified by object.

coverage = mcdcinfo(cvdo, object, ignore_descendants)
returns MCDC results for object, depending on the value of
ignore_descendants.

[coverage, description] = mcdcinfo(cvdo, object) returns
MCDC results and text descriptions of each condition/decision in
object.

Input
Arguments

cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant
objects

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

The object argument specifies an object in the Simulink model or
Stateflow diagram that receives decision coverage. Valid values for
object include the following:

1-62

mcdcinfo

Object Specification Description

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or atomic subchart and a
Stateflow object API handle contained
in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

Output
Arguments

coverage

Two-element vector of the form [covered_outcomes total_outcomes].
coverage is empty if cvdo does not contain modified condition/decision
coverage results for object. The two elements are:

covered_outcomes Number of condition/decision
outcomes satisfied for object

total_outcomes Total number of
condition/decision outcomes
for object

description

1-63

mcdcinfo

A structure array containing the following fields:

text String denoting whether the
condition/decision is associated
with a block output or Stateflow
transition

condition.text String describing a
condition/decision or the block
port to which it applies

condition.achieved Logical array indicating whether
a condition case has been fully
covered

condition.trueRslt String representing a condition
case expression that produces a
true result

condition.falseRslt String representing a condition
case expression that produces a
false result

Examples Collect MCDC coverage for the slvnvdemo_cv_small_controller
model and determine the percentage of MCDC coverage collected for the
Logic block in the Gain subsystem:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
%Create test specification object
testObj = cvtest(mdl)
%Enable MCDC coverage
testObj.settings.mcdc = 1;
%Simulate model
data = cvsim(testObj)
%Retrieve MCDC results for Logic block
blk_handle = get_param([mdl, '/Gain/Logic'], 'Handle');
cov = mcdcinfo(data, blk_handle)
%Percentage of MCDC outcomes covered

1-64

mcdcinfo

percent_cov = 100 * cov(1) / cov(2)

Alternatives Use the Coverage Settings dialog box to collect MCDC coverage for a
model:

1 Open the model.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select MCDC.

5 On the Results and Reporting tabs, specify the output you need.

6 Click OK to close the Coverage Settings dialog box and save your
changes.

7 Simulate the model and review the MCDC coverage results.

See Also complexityinfo | conditioninfo | cvsim | decisioninfo |
getCoverageInfo | overflowsaturationinfo | sigrangeinfo |
sigsizeinfo | tableinfo

How To • “Modified Condition/Decision Coverage (MCDC)”

• “MCDC Analysis”

1-65

ModelAdvisor.Action

Purpose Add actions to custom checks

Description Instances of this class define actions you take when the Model Advisor
checks do not pass. Users access actions by clicking the Action button
that you define in the Model Advisor window.

Construction ModelAdvisor.Action Add actions to custom checks

Methods setCallbackFcn Specify action callback function

Properties Description Message in Action box

Name Action button label

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples % define action (fix) operation
myAction = ModelAdvisor.Action;
myAction.Name='Fix block fonts';
myAction.Description=...

'Click the button to update all blocks with specified font';

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-66

ModelAdvisor.Action

Purpose Add actions to custom checks

Syntax action_obj = ModelAdvisor.Action

Description action_obj = ModelAdvisor.Action creates a handle to an action
object.

Note

• Include an action definition in a check definition.

• Each check can contain only one action.

Examples % define action (fix) operation
myAction = ModelAdvisor.Action;

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-67

ModelAdvisor.Check

Purpose Create custom checks

Description The ModelAdvisor.Check class creates a Model Advisor check object.
Checks must have an associated ModelAdvisor.Task object to be
displayed in the Model Advisor tree.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check
in multiple locations in the Model Advisor tree. For example,
Check for implicit signal resolution is displayed in the By
Product > Simulink folder and in theBy Task > Model Referencing
folder in the Model Advisor tree.

When you use checks in task definitions, the following rules apply:

• If you define the properties of the check in the check definition
and the task definition, the task definition takes precedence. The
Model Advisor displays the information contained in the task
definition. For example, if you define the name of the check in the
task definition using the ModelAdvisor.Task.DisplayName property
and in the check definition using the ModelAdvisor.Check.Title
property, the Model Advisor displays the information provided in
ModelAdvisor.Task.DisplayName.

• If you define the properties of the check in the check definition
but not the task definition, the task uses the properties from the
check. For example, if you define the name of the check in the check
definition using the ModelAdvisor.Check.Title property, and you
register the check using a task definition, the Model Advisor displays
the information provided in ModelAdvisor.Check.Title.

• If you define the properties of the check in the task definition but
not the check definition, the Model Advisor displays the information
as long as you register the task with the Model Advisor instead of
the check. For example, if you define the name of the check in the
task definition using the ModelAdvisor.Task.DisplayName property
instead of the ModelAdvisor.Check.Title property, and you register
the check using a task definition, the Model Advisor displays the
information provided in ModelAdvisor.Task.DisplayName.

1-68

ModelAdvisor.Check

Construction ModelAdvisor.Check Create custom checks

Methods getID Return check identifier

setAction Specify action for check

setCallbackFcn Specify callback function for
check

setInputParameters Specify input parameters for
check

setInputParametersLayoutGrid Specify layout grid for input
parameters

Properties CallbackContext Specify when to run check

CallbackHandle Callback function handle for
check

CallbackStyle Callback function type

EmitInputParametersToReport Display check input parameters
in the Model Advisor report

Enable Indicate whether user can enable
or disable check

ID Identifier for check

LicenseName Product license names required
to display and run check

ListViewVisible Status of button

Result Results cell array

supportExclusion Set to support exclusions

SupportLibrary Set to support library models

1-69

ModelAdvisor.Check

Title Name of check

TitleTips Description of check

Value Status of check

Visible Indicate to display or hide check

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-70

ModelAdvisor.Check

Purpose Create custom checks

Syntax check_obj = ModelAdvisor.Check(check_ID)

Description check_obj = ModelAdvisor.Check(check_ID) creates a check object,
check_obj, and assigns it a unique identifier, check_ID. check_IDmust
remain constant. To display checks in the Model Advisor tree, checks
must have an associated ModelAdvisor.Task or ModelAdvisor.Root
object.

Note You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution appears in the By Product > Simulink
folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

Examples rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-71

ModelAdvisor.FactoryGroup

Purpose Define subfolder in By Task folder

Description The ModelAdvisor.FactoryGroup class defines a new subfolder to add
to the By Task folder.

Construction ModelAdvisor.FactoryGroup Define subfolder in By Task
folder

Methods addCheck Add check to folder

Properties Description Description of folder

DisplayName Name of folder

ID Identifier for folder

MAObj Model Advisor object

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-72

ModelAdvisor.FactoryGroup

Purpose Define subfolder in By Task folder

Syntax fg_obj = ModelAdvisor.FactoryGroup(fg_ID)

Description fg_obj = ModelAdvisor.FactoryGroup(fg_ID) creates a handle to a
factory group object, fg_obj, and assigns it a unique identifier, fg_ID.
fg_ID must remain constant.

Examples % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-73

ModelAdvisor.FormatTemplate

Purpose Template for formatting Model Advisor analysis results

Description Use the ModelAdvisor.FormatTemplate class to format the result of
a check in the analysis result pane of the Model Advisor for a uniform
look and feel among the checks you create. There are two formats for
the analysis result:

• Table

• List

Construction ModelAdvisor.FormatTemplate Construct template object
for formatting Model Advisor
analysis results

Methods addRow Add row to table

setCheckText Add description of check to result

setColTitles Add column titles to table

setInformation Add description of subcheck to
result

setListObj Add list of hyperlinks to model
objects

setRecAction Add Recommended Action section
and text

setRefLink Add See Also section and links

setSubBar Add line between subcheck
results

setSubResultStatus Add status to check or subcheck
result

setSubResultStatusText Add text below status in result

1-74

ModelAdvisor.FormatTemplate

setSubTitle Add title for subcheck in result

setTableInfo Add data to table

setTableTitle Add title to table

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples The following code creates two template objects, ft1 and ft2, and uses
them to format the result of running the check in a table and a list.
The result identifies the blocks in the model. The graphics following
the code display the output as it appears in the Model Advisor when
the check passes and fails.

% Sample Check With Subchecks Callback Function

function ResultDescription = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

%Initialize variables

ResultDescription={};

ResultStatus = false; % Default check status is 'Warning'

mdladvObj.setCheckResultStatus(ResultStatus);

% Create FormatTemplate object for first subcheck, specify table format

ft1 = ModelAdvisor.FormatTemplate('TableTemplate');

% Add information describing the overall check

setCheckText(ft1, ['Find and report all blocks in the model. '...

'(setCheckText method - Description of what the check reviews)']);

% Add information describing the subcheck

setSubTitle(ft1, 'Table of Blocks (setSubTitle method - Title of the subcheck)');

setInformation(ft1, ['Find and report all blocks in a table. '...

'(setInformation method - Description of what the subcheck reviews)']);

% Add See Also section for references to standards

1-75

ModelAdvisor.FormatTemplate

setRefLink(ft1, {{'Standard 1 reference (setRefLink method)'},

{'Standard 2 reference (setRefLink method'}});

% Add information to the table

setTableTitle(ft1, {'Blocks in the Model (setTableTitle method)'});

setColTitles(ft1, {'Index (setColTitles method)',

'Block Name (setColTitles method)'});

% Perform the check actions

allBlocks = find_system(system);

if length(find_system(system)) == 1

% Add status for subcheck

setSubResultStatus(ft1, 'Warn');

setSubResultStatusText(ft1, ['The model does not contain blocks. '...

'(setSubResultStatusText method - Description of result status)']);

setRecAction(ft1, {'Add blocks to the model. '...

'(setRecAction method - Description of how to fix the problem)'});

ResultStatus = false;

else

% Add status for subcheck

setSubResultStatus(ft1, 'Pass');

setSubResultStatusText(ft1, ['The model contains blocks. '...

'(setSubResultStatusText method - Description of result status)']);

for inx = 2 : length(allBlocks)

% Add information to the table

addRow(ft1, {inx-1,allBlocks(inx)});

end

ResultStatus = true;

end

% Pass table template object for subcheck to Model Advisor

ResultDescription{end+1} = ft1;

% Create FormatTemplate object for second subcheck, specify list format

ft2 = ModelAdvisor.FormatTemplate('ListTemplate');

% Add information describing the subcheck

1-76

ModelAdvisor.FormatTemplate

setSubTitle(ft2, 'List of Blocks (setSubTitle method - Title of the subcheck)');

setInformation(ft2, ['Find and report all blocks in a list. '...

'(setInformation method - Description of what the subcheck reviews)']);

% Add See Also section for references to standards

setRefLink(ft2, {{'Standard 1 reference (setRefLink method)'},

{'Standard 2 reference (setRefLink method)'}});

% Last subcheck, supress line

setSubBar(ft2, false);

% Perform the subcheck actions

if length(find_system(system)) == 1

% Add status for subcheck

setSubResultStatus(ft2, 'Warn');

setSubResultStatusText(ft2, ['The model does not contain blocks. '...

'(setSubResultStatusText method - Description of result status)']);

setRecAction(ft2, {'Add blocks to the model. '...

'(setRecAction method - Description of how to fix the problem)'});

ResultStatus = false;

else

% Add status for subcheck

setSubResultStatus(ft2, 'Pass');

setSubResultStatusText(ft2, ['The model contains blocks. '...

'(setSubResultStatusText method - Description of result status)']);

% Add information to the list

setListObj(ft2, allBlocks);

end

% Pass list template object for the subcheck to Model Advisor

ResultDescription{end+1} = ft2;

% Set overall check status

mdladvObj.setCheckResultStatus(ResultStatus);

1-77

ModelAdvisor.FormatTemplate

The following graphic displays the output as it appears in the Model
Advisor when the check passes.

1-78

ModelAdvisor.FormatTemplate

The following graphic displays the output as it appears in the Model
Advisor when the check fails.

1-79

ModelAdvisor.FormatTemplate

Alternatives Use the Model Advisor Formatting API to format check analysis results.
However, use the ModelAdvisor.FormatTemplate class for a uniform
look and feel among the checks you create.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-80

ModelAdvisor.FormatTemplate

Purpose Construct template object for formatting Model Advisor analysis results

Syntax obj = ModelAdvisor.FormatTemplate('type')

Description obj = ModelAdvisor.FormatTemplate('type') creates a handle, obj,
to an object of the ModelAdvisor.FormatTemplate class. type is a
string identifying the format type of the template, either list or table.
Valid values are ListTemplate and TableTemplate.

You must return the result object to the Model Advisor to display the
formatted result in the analysis result pane.

Note Use the ModelAdvisor.FormatTemplate class in check callbacks.

Examples Create a template object, ft, and use it to create a list template:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-81

ModelAdvisor.Group

Purpose Define custom folder

Description The ModelAdvisor.Group class defines a folder that is displayed in the
Model Advisor tree. Use folders to consolidate checks by functionality
or usage.

Construction ModelAdvisor.Group Define custom folder

Methods addGroup Add subfolder to folder

addProcedure Add procedure to folder

addTask Add task to folder

Properties Description Description of folder

DisplayName Name of folder

ID Identifier for folder

MAObj Model Advisor object

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-82

ModelAdvisor.Group

Purpose Define custom folder

Syntax group_obj = ModelAdvisor.Group(group_ID)

Description group_obj = ModelAdvisor.Group(group_ID) creates a handle to a
group object, group_obj, and assigns it a unique identifier, group_ID.
group_ID must remain constant.

Examples MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-83

ModelAdvisor.Image

Purpose Include image in Model Advisor output

Description The ModelAdvisor.Image class adds an image to the Model Advisor
output.

Construction ModelAdvisor.Image Include image in Model Advisor
output

Methods setHyperlink Specify hyperlink location

setImageSource Specify image location

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-84

ModelAdvisor.Image

Purpose Include image in Model Advisor output

Syntax object = ModelAdvisor.Image

Description object = ModelAdvisor.Image creates a handle to an image object,
object, that the Model Advisor displays in the output. The Model
Advisor supports many image formats, including, but not limited to,
JPEG, BMP, and GIF.

Examples image_obj = ModelAdvisor.Image;

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-85

ModelAdvisor.InputParameter

Purpose Add input parameters to custom checks

Description Instances of the ModelAdvisor.InputParameter class specify the input
parameters a custom check uses in analyzing the model. Access input
parameters in the Model Advisor window.

Construction ModelAdvisor.InputParameter Add input parameters to custom
checks

Methods setColSpan Specify number of columns for
input parameter

setRowSpan Specify rows for input parameter

Properties Description Description of input parameter

Entries Drop-down list entries

Name Input parameter name

Type Input parameter type

Value Value of input parameter

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-86

ModelAdvisor.InputParameter

Purpose Add input parameters to custom checks

Syntax input_param = ModelAdvisor.InputParameter

Description input_param = ModelAdvisor.InputParameter creates a handle to an
input parameter object, input_param.

Note You must include input parameter definitions in a check
definition.

Examples
Note The following example is a fragment of code from the
sl_customization.m file for the example model, slvnvdemo_mdladv.
The example does not execute as shown without the additional content
found in the sl_customization.m file.

1-87

ModelAdvisor.InputParameter

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.setInputParametersLayoutGrid([3 2]);

% define input parameters

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Skip font checks.';

inputParam1.Type = 'Bool';

inputParam1.Value = false;

inputParam1.Description = 'sample tooltip';

inputParam1.setRowSpan([1 1]);

inputParam1.setColSpan([1 1]);

inputParam2 = ModelAdvisor.InputParameter;

inputParam2.Name = 'Standard font size';

inputParam2.Value='12';

inputParam2.Type='String';

inputParam2.Description='sample tooltip';

inputParam2.setRowSpan([2 2]);

inputParam2.setColSpan([1 1]);

inputParam3 = ModelAdvisor.InputParameter;

inputParam3.Name='Valid font';

inputParam3.Type='Combobox';

inputParam3.Description='sample tooltip';

inputParam3.Entries={'Arial', 'Arial Black'};

inputParam3.setRowSpan([2 2]);

inputParam3.setColSpan([2 2]);

rec.setInputParameters({inputParam1,inputParam2,inputParam3});

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-88

ModelAdvisor.LineBreak

Purpose Insert line break

Description Use instances of the ModelAdvisor.LineBreak class to insert line
breaks in the Model Advisor outputs.

Construction ModelAdvisor.LineBreak Insert line break

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-89

ModelAdvisor.LineBreak

Purpose Insert line break

Syntax ModelAdvisor.LineBreak

Description ModelAdvisor.LineBreak inserts a line break into the Model Advisor
output.

Examples Add a line break between two lines of text:

result = ModelAdvisor.Paragraph;

addItem(result, [resultText1 ModelAdvisor.LineBreak resultText2]);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-90

ModelAdvisor.List

Purpose Create list class

Description Use instances of the ModelAdvisor.List class to create list-formatted
outputs.

Construction ModelAdvisor.List Create list class

Methods addItem Add item to list

setType Specify list type

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-91

ModelAdvisor.List

Purpose Create list class

Syntax list = ModelAdvisor.List

Description list = ModelAdvisor.List creates a list object, list.

Examples subList = ModelAdvisor.List();

setType(subList, 'numbered')

addItem(subList, ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

addItem(subList, ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-92

ModelAdvisor.ListViewParameter

Purpose Add list view parameters to custom checks

Description The Model Advisor uses list view parameters to populate the Model
Advisor Result Explorer. Access the information in list views by clicking
Explore Result in the Model Advisor window.

Construction ModelAdvisor.ListViewParameter Add list view parameters to
custom checks

Properties Attributes Attributes to display in Model
Advisor Report Explorer

Data Objects in Model Advisor Result
Explorer

Name Drop-down list entry

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples
Note The following example is a fragment of code from the
sl_customization.m file for the example model, slvnvdemo_mdladv.
The example does not execute as shown without the additional content
found in the sl_customization.m file.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

1-93

ModelAdvisor.ListViewParameter

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-94

ModelAdvisor.ListViewParameter

Purpose Add list view parameters to custom checks

Syntax lv_param = ModelAdvisor.ListViewParameter

Description lv_param = ModelAdvisor.ListViewParameter defines a list view,
lv_param.

Note Include list view parameter definitions in a check definition.

See Also “Model Advisor Customization”

How To • “Define Model Advisor Result Explorer Views”

• “Authoring Checks”

• “Batch-Fix Warnings or Failures”

• “Customization Example”

• “getListViewParameters”

• “setListViewParameters”

1-95

ModelAdvisor.lookupCheckID

Purpose Look up Model Advisor check ID

Syntax NewID = ModelAdvisor.lookupCheckID('OldCheckID')

Description NewID = ModelAdvisor.lookupCheckID('OldCheckID') returns the
check ID of the check specified by OldCheckID. OldCheckID is the ID
of a check prior to R2010b.

Input
Arguments

OldCheckID

OldCheckID is the ID of a check prior to R2010b.

Output
Arguments

NewID

Check ID that corresponds to the previous check ID identified by
OldCheckID.

Examples Look up the check ID for By Product > Simulink Verification
and Validation > Modeling Standards > DO-178C/DO-331
Checks > Check safety-related optimization settings using the
previous ID DO178B:OptionSet:

NewID = ModelAdvisor.lookupCheckID('DO178B:OptionSet');

Alternatives “Archive and View Results”

See Also ModelAdvisor.run

How To • “Archive and View Results”

1-96

ModelAdvisor.Paragraph

Purpose Create and format paragraph

Description The ModelAdvisor.Paragraph class creates and formats a paragraph
object.

Construction ModelAdvisor.Paragraph Create and format paragraph

Methods addItem Add item to paragraph

setAlign Specify paragraph alignment

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples % Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-97

ModelAdvisor.Paragraph

Purpose Create and format paragraph

Syntax para_obj = ModelAdvisor.Paragraph

Description para_obj = ModelAdvisor.Paragraph defines a paragraph object
para_obj.

Examples % Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-98

ModelAdvisor.Procedure

Purpose Define custom procedures

Description The ModelAdvisor.Procedure class defines a procedure that is
displayed in the Model Advisor tree. Use procedures to organize
additional procedures or checks by functionality or usage.

Construction ModelAdvisor.Procedure Define custom procedures

Properties Description

Provides information about the procedure. Details about the
procedure are displayed in the right pane of the Model Advisor.

Default: ' ' (null string)

Name

Specifies the name of the procedure that is displayed in the Model
Advisor.

Default: ' ' (null string)

ID

Specifies a permanent, unique identifier for the procedure.

Note

• You must specify this field.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Procedure definitions must refer to other procedures by ID.

1-99

ModelAdvisor.Procedure

MAObj

Specifies a handle to the current Model Advisor object.

Methods addProcedure Add subprocedure to procedure

addTask Add task to procedure

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Overview of Procedural-Based Model Advisor Configurations”

• “Create Procedures”

• “Create a Procedural-Based Configuration”

• “Authoring Checks”

1-100

ModelAdvisor.Procedure

Purpose Define custom procedures

Syntax procedure_obj = ModelAdvisor.Procedure(procedure_ID)

Description procedure_obj = ModelAdvisor.Procedure(procedure_ID) creates a
handle to a procedure object, procedure_obj, and assigns it a unique
identifier, procedure_ID. procedure_ID must remain constant.

Examples MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');

See Also “Model Advisor Customization”

How To • “Overview of Procedural-Based Model Advisor Configurations”

• “Create Procedures”

• “Create a Procedural-Based Configuration”

• “Authoring Checks”

1-101

ModelAdvisor.Root

Purpose Identify root node

Description The ModelAdvisor.Root class returns the root object.

Construction ModelAdvisor.Root Identify root node

Methods publish Publish object in Model Advisor
root

register Register object in Model Advisor
root

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-102

ModelAdvisor.Root

Purpose Identify root node

Syntax root_obj = ModelAdvisor.Root

Description root_obj = ModelAdvisor.Root creates a handle to the root object,
root_obj.

Examples mdladvRoot = ModelAdvisor.Root;

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-103

ModelAdvisor.run

Purpose Run Model Advisor checks on systems

Syntax SysResultObjArray =
ModelAdvisor.run(SysList,CheckIDList,Name,Value)
SysResultObjArray =
ModelAdvisor.run(SysList,'Configuration',

FileName,Name,Value)

Description SysResultObjArray =
ModelAdvisor.run(SysList,CheckIDList,Name,Value) runs the
Model Advisor on the systems provided by SysList with additional
options specified by one or more optional Name,Value pair arguments.
CheckIDList contains cell array of check IDs to run.

SysResultObjArray =
ModelAdvisor.run(SysList,'Configuration',
FileName,Name,Value) runs the Model Advisor on the systems
provided by SysList. The list of checks to run is specified using a
Model Advisor configuration file, specified by FileName.

Tips • If you have a Parallel Computing Toolbox™ license and a
multicore machine, Model Advisor can run on multiple systems in
parallel. You can run the Model Advisor in parallel mode by using
ModelAdvisor.run with `ParallelMode' set to `On'. By default,
`ParallelMode' is set to `Off'. When you use ModelAdvisor.run
with `ParallelMode' set to `On', MATLAB automatically creates
a parallel pool.

Input
Arguments

SysList

Cell array of systems to run.

CheckIDList

Cell array of check IDs to run. For details on how to find check IDs,
see “Finding Check IDs”.

1-104

ModelAdvisor.run

CheckIDList optionally can include input parameters
for specific checks using the following syntax;
{'CheckID','InputParam',{'IP','IPV'}}, where IP is the
input parameter name and IPV is the corresponding input parameter
value. You can specify several input parameter name and value pair
arguments in any order as IP1,IPV1, ,IPN,IPVN.

FileName

Name of the Model Advisor configuration file. For details on creating a
configuration file, see “Organize Checks and Folders Using the Model
Advisor Configuration Editor”.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

’DisplayResults’

Setting DisplayResults to 'Summary' displays a summary of the
system results in the Command Window. Setting DisplayResults to
'Details' displays the following in the Command Window:

• Which system the Model Advisor is checking while the run is in
progress.

• For each system, the pass and fail results of each check.

• A summary of the system results.
Setting DisplayResults to 'None' displays no information in the
Command Window.

Default: 'Summary'

’Force’

1-105

ModelAdvisor.run

Setting Force to 'On' removes existing modeladvisor/system
folders. Setting Force to 'Off' prompts you before removing existing
modeladvisor/system folders.

Default: 'Off'

’ParallelMode’

Setting ParallelMode to 'On' runs the Model Advisor in parallel
mode if you have a Parallel Computing Toolbox license and a multicore
machine.

Default: 'Off'

’TempDir’

Setting TempDir to 'On' runs the Model Advisor from a temporary
working folder, to avoid concurrency issues when running using a
parallel pool. For more information, see “Resolving Data Concurrency
Issues”. Setting TempDir to 'Off' runs the Model Advisor in the
current working folder.

Default: 'Off'

’ShowExclusions’

Setting ShowExclusions to 'On' lists Model Advisor check exclusions
in the report. Setting ShowExclusions to `Off' does not list Model
Advisor check exclusion in the report.

Default: 'On'

Output
Arguments

SysResultObjArray

Cell array of ModelAdvisor.SystemResult objects, one for each
model specified in SysList. Each ModelAdvisor.SystemResult
object contains an array of CheckResultObj objects. Save
SysResultObjArray to review results at a later time without having

1-106

ModelAdvisor.run

to rerun the Model Advisor (see “Understanding the Save and Load
Process”).

CheckResultObj

Array of ModelAdvisor.CheckResult objects, one for each check that
runs.

Examples Runs the Model Advisor checks Check model diagnostic
parameters and Check for fully defined interface on
the sldemo_auto_climatecontrol/Heater Control and
sldemo_auto_climatecontrol/AC Control subsystems:

% Create list of checks and models to run.

CheckIDList ={'mathworks.maab.jc_0021',...

'mathworks.iec61508.RootLevelInports'};

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,CheckIDList);

Runs the Model Advisor configuration file
slvnvdemo_mdladv_config.mat on the
sldemo_auto_climatecontrol/Heater Control and
sldemo_auto_climatecontrol/AC Control subsystems:

% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

1-107

ModelAdvisor.run

Alternatives • Use the Model Advisor GUI to run each system, one at a time.

• Create a script or function using the Simulink.ModelAdvisor class
to run each system, one at a time.

See Also ModelAdvisor.summaryReport | view | viewReport |
ModelAdvisor.lookupCheckID

Tutorials • “Workflow for Checking Systems Programmatically”

• “Check Multiple Systems in Parallel”

• “Create a Function for Checking Multiple Systems in Parallel”

How To • “Automating Check Execution”

• “Finding Check IDs”

• “Organize Checks and Folders Using the Model Advisor Configuration
Editor”

• “Understanding the Save and Load Process”

1-108

ModelAdvisor.summaryReport

Purpose Open Model Advisor Command-Line Summary report

Syntax ModelAdvisor.summaryReport(SysResultObjArray)

Description ModelAdvisor.summaryReport(SysResultObjArray) opens the
Model Advisor Command-Line Summary report in a web browser.
SysResultObjArray is a cell array of ModelAdvisor.SystemResult
objects returned by ModelAdvisor.run.

Input
Arguments

SysResultObjArray

Cell array of ModelAdvisor.SystemResult objects returned by
ModelAdvisor.run.

Examples Opens the Model Advisor Command-Line Summary report after
running the Model Advisor:

% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Open the Model Advisor Command-Line Summary report.

ModelAdvisor.summaryReport(SysResultObjArray)

Alternatives “View Results in Model Advisor Command-Line Summary Report”

See Also ModelAdvisor.run | view | viewReport

Tutorials • “Workflow for Checking Systems Programmatically”

• “Check Multiple Systems in Parallel”

• “Create a Function for Checking Multiple Systems in Parallel”

1-109

ModelAdvisor.summaryReport

How To • “Automating Check Execution”

• “Archive and View Model Advisor Run Results”

1-110

ModelAdvisor.Table

Purpose Create table

Description Instances of the ModelAdvisor.Table class create and format a table.
Specify the number of rows and columns in a table, excluding the table
title and table heading row.

Construction ModelAdvisor.Table Create table

Methods getEntry Get table cell contents

setColHeading Specify table column title

setColHeadingAlign Specify column title alignment

setColHeadingValign Specify column title vertical
alignment

setColWidth Specify column widths

setEntries Set contents of table

setEntry Add cell to table

setEntryAlign Specify table cell alignment

setEntryValign Specify table cell vertical
alignment

setHeading Specify table title

setHeadingAlign Specify table title alignment

setRowHeading Specify table row title

setRowHeadingAlign Specify table row title alignment

setRowHeadingValign Specify table row title vertical
alignment

1-111

ModelAdvisor.Table

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-112

ModelAdvisor.Table

Purpose Create table

Syntax table = ModelAdvisor.Table(row, column)

Description table = ModelAdvisor.Table(row, column) creates a table object
(table). The Model Advisor displays the table object containing the
specified number of rows (row) and columns (column).

Examples In the following example, you create two table objects, table1 and
table2. The Model Advisor displays table1 in the results as a table
with 1 row and 1 column. The Model Advisor display table2 in the
results as a table with 2 rows and 3 columns.

table1 = ModelAdvisor.Table(1,1);
table2 = ModelAdvisor.Table(2,3);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-113

ModelAdvisor.Task

Purpose Define custom tasks

Description The ModelAdvisor.Task class is a wrapper for a check so that you can
access the check with the Model Advisor.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check
in multiple locations in the Model Advisor tree. For example,
Check for implicit signal resolution is displayed in the By
Product > Simulink folder and in theBy Task > Model Referencing
folder in the Model Advisor tree.

When adding checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for Visible and
LicenseName.

Construction ModelAdvisor.Task Define custom tasks

Methods setCheck Specify check used in task

Properties Description Description of task

DisplayName Name of task

Enable Indicate if user can enable and
disable task

ID Identifier for task

LicenseName Product license names required
to display and run task

MAObj Model Advisor object

Value Status of task

Visible Indicate to display or hide task

1-114

ModelAdvisor.Task

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');
MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-115

ModelAdvisor.Task

Purpose Define custom tasks

Syntax task_obj = ModelAdvisor.Task(task_ID)

Description task_obj = ModelAdvisor.Task(task_ID) creates a task object,
task_obj, with a unique identifier, task_ID. task_ID must remain
constant. If you do not specify task_ID, the Model Advisor assigns a
random task_ID to the task object.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution appears in the By Product > Simulink
folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

When adding checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for Visible and
LicenseName.

Examples In the following example, you create three task objects, MAT1, MAT2,
and MAT3.

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');
MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-116

ModelAdvisor.Text

Purpose Create Model Advisor text output

Description Instances of ModelAdvisor.Text class create formatted text for the
Model Advisor output.

Construction ModelAdvisor.Text Create Model Advisor text output

Methods setBold Specify bold text

setColor Specify text color

setHyperlink Specify hyperlinked text

setItalic Italicize text

setRetainSpaceReturn Retain spacing and returns in
text

setSubscript Specify subscripted text

setSuperscript Specify superscripted text

setUnderlined Underline text

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB Programming Fundamentals documentation.

Examples t1 = ModelAdvisor.Text('This is some text');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-117

ModelAdvisor.Text

Purpose Create Model Advisor text output

Syntax text = ModelAdvisor.Text(content, {attribute})

Description text = ModelAdvisor.Text(content, {attribute}) creates a text
object for the Model Advisor output.

Input
Arguments

content Optional string specifying the content of the
text object. If content is empty, empty text
is output.

attribute Optional cell array of strings specifying the
formatting of the content. If no attribute is
specified, the output text has default coloring
with no formatting. Possible formatting
options include:

• normal (default) — Text is default color
and style.

• bold — Text is bold.

• italic — Text is italicized.

• underline— Text is underlined.

• pass — Text is green.

• warn — Text is yellow.

• fail — Text is red.

• keyword — Text is blue.

• subscript— Text is subscripted.

• superscript— Text is superscripted.

1-118

ModelAdvisor.Text

Output
Arguments

text The text object you create

Examples text = ModelAdvisor.Text('Sub entry 1', {'pass','bold'})

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-119

overflowsaturationinfo

Purpose Retrieve saturation on integer overflow coverage from cvdata object

Syntax coverage = overflowsaturationinfo(covdata, object)
coverage = overflowsaturationinfo(covdata, object,

ignore_descendants)
[coverage, description] = overflowsaturationinfo(covdata,
object)

Description coverage = overflowsaturationinfo(covdata, object) returns
saturation on integer overflow coverage results from the cvdata object
covdata for the model object specified by object and its descendants.

coverage = overflowsaturationinfo(covdata, object,
ignore_descendants) returns saturation on integer overflow coverage
results from the cvdata object covdata for the model object specified
by object and, depending on the value of ignore_descendants,
descendant objects.

[coverage, description] = overflowsaturationinfo(covdata,
object) returns saturation on integer overflow coverage results from
the cvdata object covdata for the model object specified by object,
and textual descriptions of each coverage outcome.

Input
Arguments

covdata - Coverage results data
cvdata object

Coverage results data, specified as a cvdata object.

object - Model or model component
full path | handle

Model or model component, specified as a full path, handle, or array
of paths or handles.

1-120

overflowsaturationinfo

Object Specification Description

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or atomic subchart and a
Stateflow object API handle contained
in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

Example: 'slvnvdemo_saturation_on_overflow_coverage'

Example:
get_param('slvnvdemo_cv_small_controller/Saturation',
'Handle')

ignore_descendants - Preference to ignore coverage of
descendant objects
0 (default) | 1

Preference to ignore coverage of descendant objects, specified as a
logical value.

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

1-121

overflowsaturationinfo

Data Types
logical

Output
Arguments

coverage - Saturation on overflow coverage results for object
numerical vector

Saturation on overflow coverage results, stored in a two-element vector
of the form [covered_outcomes total_outcomes]. The two elements
are:

covered_outcomes Number of saturation on integer
overflow outcomes satisfied for
object

total_outcomes Total number of saturation on
integer overflow outcomes for
object

Data Types
double

description - Textual description of coverage outcomes
structure array

Textual description of coverage outcomes for the model component
specified by object, returned as a structure array. Depending on the
types of model coverage collected, the structure array can have different
fields. If only saturation on overflow coverage is collected, the structure
array contains the following fields:

1-122

overflowsaturationinfo

isFiltered 0 if the model component specified
by object is not excluded from
coverage recording. 1 if the model
component specified by object is
excluded from coverage recording.
For more information about
excluding objects from coverage,
see “Coverage Filtering”.

decision.text 'Saturate on integer
overflow'

decision.outcome Structure array containing two
fields for each coverage outcome:

executionCountNumber
of times
saturation
on integer
overflow
for object
evaluated to
the outcome
described by
text.

text 'true' or
'false'

Saturation on integer overflow
has two possible outcomes,
'true' and 'false'.

1-123

overflowsaturationinfo

decision.isFiltered 0 if the model component specified
by object is not excluded from
coverage recording. 1 if the model
component specified by object is
excluded from coverage recording.
For more information about
excluding objects from coverage,
see “Coverage Filtering”.

decision.filterRationale Rationale for filtering the model
component specified by object, if
object is excluded from coverage
and a rationale is specified.
For more information about
excluding objects from coverage,
see “Coverage Filtering”.

Data Types
struct

Examples Collect Saturation on Integer Overflow Coverage for
MinMax Block

Collect saturation on integer overflow coverage information for a
MinMax block in the example model sldemo_fuelsys.

Open the sldemo_fuelsys example model. Create a model coverage
test specification object for the Mixing & Combustion subsystem of the
Engine Gas Dynamics subsystem.

open_system('sldemo_fuelsys');
testObj = cvtest('sldemo_fuelsys/Engine Gas Dynamics/' ...

'Mixing & Combustion');

In the model coverage test specification object, specify to collect
saturation on overflow coverage.

testObj.settings.overflowsaturation = 1;

1-124

overflowsaturationinfo

Simulate the model and collect coverage results in a new cvdata object.

dataObj = cvsim(testObj);

Get the saturation on overflow coverage results for the MinMax
block in the Mixing & Combustion subsystem. The coverage results
are stored in a two-element vector of the form [covered_outcomes
total_outcomes].

blockHandle = get_param('sldemo_fuelsys/' ...
'Engine Gas Dynamics/Mixing & Combustion/MinMax','Handle');

covResults = overflowsaturationinfo(dataObj, blockHandle)

covResults =

1 2

One out of two saturation on integer overflow decision outcomes were
satisfied for the MinMax block in the Mixing & Combustion subsystem,
so it received 50% saturation on integer overflow coverage.

Collect Saturation on Integer Overflow Coverage and
Description for Example Model

Collect saturation on integer overflow coverage for the example model
slvnvdemo_saturation_on_overflow_coverage. Review collected
coverage results and description for Sum block in Controller subsystem.

Open the slvnvdemo_saturation_on_overflow_coverage example
model.

open_system('slvnvdemo_saturation_on_overflow_coverage');

Simulate the model and collect coverage results in a new cvdata object.

dataObj = cvsim('slvnvdemo_saturation_on_overflow_coverage');

Retrieve saturation on integer overflow coverage results and description
for the Sum block in the Controller subsystem of the Test Unit
subsystem.

1-125

overflowsaturationinfo

[covResults covDesc] = overflowsaturationinfo(dataObj, ...
'slvnvdemo_saturation_on_overflow_coverage/Test Unit /' ...
'Controller/Sum')

covResults =

1 2

covDesc =

isFiltered: 0
decision: [1x1 struct]

One out of two saturation on integer overflow decision outcomes were
satisfied for the Sum block, so it received 50% saturation on integer
overflow coverage.

Review the number of times the Sum block evaluated to each saturation
on integer overflow outcome during simulation.

covDesc.decision.outcome(1)

ans =

executionCount: 3
text: 'false'

covDesc.decision.outcome(2)

ans =

executionCount: 0
text: 'true'

During simulation, integer overflow did not occur in the Sum block.

1-126

overflowsaturationinfo

If integer overflow is not possible for a block in your model, consider
clearing the Saturate on integer overflow block parameter to
optimize efficiency of your generated code.

See Also cvtest | cvsim | decisioninfo | complexityinfo | conditioninfo
| getCoverageInfo | mcdcinfo | sigrangeinfo | sigsizeinfo |
tableinfo

Related
Examples

• “Command Line Verification Tutorial”

Concepts • “Saturate on Integer Overflow Coverage”

1-127

ModelAdvisor.Root.publish

Purpose Publish object in Model Advisor root

Syntax publish(root_obj, check_obj, location)
publish(root_obj, group_obj)
publish(root_obj, procedure_obj)
publish(root_obj, fg_obj)

Description publish(root_obj, check_obj, location) specifies where the Model
Advisor places the check in the Model Advisor tree. location is either
one of the subfolders in the By Product folder, or the name of a new
subfolder to put in the By Product folder. Use a pipe-delimited string
to indicate multiple subfolders. For example, to add a check to the
Simulink Verification and Validation > Modeling Standards
folder, use the following string: 'Simulink Verification and
Validation|Modeling Standards'.

If the By Product is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog
box.

publish(root_obj, group_obj) specifies the ModelAdvisor.Group
object to publish as a folder in the Model Advisor Task Manager
folder.

publish(root_obj, procedure_obj) specifies the
ModelAdvisor.Procedure object to publish.

publish(root_obj, fg_obj) specifies the
ModelAdvisor.FactoryGroup object to publish as a subfolder in the
By Task folder.

Examples % publish check into By Product > Demo group.
mdladvRoot.publish(rec, 'Demo');

How To • “Define Where Custom Checks Appear”

• “Define Where Tasks Appear”

• “Define Where Custom Folders Appear”

1-128

ModelAdvisor.Root.register

Purpose Register object in Model Advisor root

Syntax register(MAobj, obj)

Description register(MAobj, obj) registers the object, obj, in the root object
MAobj.

In the Model Advisor memory, the register method registers the
following types of objects:

• ModelAdvisor.Check

• ModelAdvisor.FactoryGroup

• ModelAdvisor.Group

• ModelAdvisor.Procedure

• ModelAdvisor.Task

The register method places objects in the Model Advisor memory that
you use in other functions. The register method does not place objects
in the Model Advisor tree.

Examples mdladvRoot = ModelAdvisor.Root;

MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT1.setCheck('com.mathworks.sample.Check1');

mdladvRoot.register(MAT1);

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT2.setCheck('com.mathworks.sample.Check2');

mdladvRoot.register(MAT2);

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.setCheck('com.mathworks.sample.Check3');

1-129

ModelAdvisor.Root.register

mdladvRoot.register(MAT3)

1-130

rmi

Purpose Interact programmatically with Requirements Management Interface

Syntax reqlinks = rmi('createEmpty')
reqlinks = rmi('get', model)
reqlinks = rmi('get', sig_builder, group_idx)
rmi('set', model, reqlinks)
rmi('set', sig_builder, reqlinks, group_idx)
rmi('cat', model, reqlinks)
cnt = rmi('count', model)
rmi('clearAll', object)
rmi('clearAll', object, 'deep')
rmi('clearAll', object, 'noprompt')
rmi('clearAll', object, 'deep', 'noprompt')

cmdStr = rmi('navCmd', object)
[cmdStr, titleStr] = rmi('navCmd', object)
object = rmi('guidlookup', model, guidStr)
rmi('highlightModel', object)
rmi('unhighlightModel', object)
rmi('view', object, index)
dialog = rmi('edit', object)
guidStr = rmi('guidget', object)

rmi('report', model)
rmi('report', matlabfilepath)
rmi('projectreport')

rmi setup
rmi register linktypename
rmi unregister linktypename
rmi linktypelist

number_problems = rmi('checkdoc')
number_problems = rmi('checkdoc', docName)
rmi('check', matlabfilepath)

rmi('doorssync', model)

1-131

rmi

rmi('setDoorsLabelTemplate', template)
template = rmi('getDoorsLabelTemplate')
label = rmi('doorsLabel', moduleID, objectID)
totalModifiedLinks = rmi('updateDoorsLabels', model)

Description reqlinks = rmi('createEmpty') creates an empty instance of the
requirement links data structure.

reqlinks = rmi('get', model) returns the requirement links data
structure for model.

reqlinks = rmi('get', sig_builder, group_idx) returns the
requirement links data structure for the Signal Builder group specified
by the index group_idx.

rmi('set', model, reqlinks) sets reqlinks as the requirements
links for model.

rmi('set', sig_builder, reqlinks, group_idx) sets reqlinks as
the requirements links for the signal group group_idx in the Signal
Builder block sig_builder.

rmi('cat', model, reqlinks) adds the requirements links in
reqlinks to existing requirements links for model.

cnt = rmi('count', model) returns the number of requirements
links for model.

rmi('clearAll', object) deletes all requirements links for object.

rmi('clearAll', object, 'deep') deletes all requirements links
in the model containing object.

1-132

rmi

rmi('clearAll', object, 'noprompt') deletes all requirements
links for object and does not prompt for confirmation.

rmi('clearAll', object, 'deep', 'noprompt') deletes all
requirements links in the model containing object and does not
prompt for confirmation.

cmdStr = rmi('navCmd', object) returns the MATLAB command
string cmdStr used to navigate to object.

[cmdStr, titleStr] = rmi('navCmd', object) returns the
MATLAB command string cmdStr and the title string titleStr that
provides descriptive text for object.

object = rmi('guidlookup', model, guidStr) returns the object
name in model that has the globally unique identifier guidStr.

rmi('highlightModel', object) highlights all of the objects in the
parent model of object that have requirement links.

rmi('unhighlightModel', object) removes highlighting of objects in
the parent model of object that have requirement links.

rmi('view', object, index) accesses the requirement numbered
index in the requirements document associated with object.

dialog = rmi('edit', object) displays the Requirements dialog box
for object and returns the handle of the dialog box.

guidStr = rmi('guidget', object) returns the globally unique
identifier for object. A globally unique identifier is created for object
if it lacks one.

1-133

rmi

rmi('report', model) generates a Requirements Traceability report
in HTML format for model.

rmi('report', matlabfilepath) generates a Requirements
Traceability report in HTML format for the MATLAB code file specified
by matlabfilepath.

rmi('projectreport') generates a Requirements Traceability report
in HTML format for the current Simulink Project. The master page
of this report has HTTP links to reports for each project item that
has requirements traceability associations. For more information, see
“Create Requirements Traceability Report for Simulink Project”.

rmi setup configures RMI for use with your MATLAB software
and installs the interface for use with the IBM® Rational® DOORS®

software.

rmi register linktypename registers the custom link type specified
by the function linktypename. For more information, see “Custom Link
Type Registration”.

rmi unregister linktypename removes the custom link type specified
by the function linktypename. For more information, see “Custom Link
Type Registration”.

rmi linktypelist displays a list of the currently registered link types.
The list indicates whether each link type is built-in or custom, and
provides the path to the function used for its registration.

number_problems = rmi('checkdoc') checks validity of links to
Simulink from a requirements document in Microsoft® Word, Microsoft
Excel®, or IBM Rational DOORS. It prompts for the requirements
document name, returns the total number of problems detected, and

1-134

rmi

opens an HTML report in the MATLAB Web browser. For more
information, see “Validate Requirements Links in a Requirements
Document”.

number_problems = rmi('checkdoc', docName) checks validity
of links to Simulink from the requirements document specified by
docName. It returns the total number of problems detected and opens
an HTML report in the MATLAB Web browser. For more information,
see “Validate Requirements Links in a Requirements Document”.

rmi('check', matlabfilepath) checks consistency of traceability
links associated with MATLAB code lines in the .m file
matlabfilepath, and opens an HTML report in the MATLAB Web
browser.

rmi('doorssync', model) opens the DOORS synchronization
settings dialog box, where you can customize the synchronization
settings and synchronize your model with an open project in an IBM
Rational DOORS database. See rmi.doorssync for information about
synchronizing your model with DOORS at the MATLAB command line.

rmi('setDoorsLabelTemplate', template) specifies a new custom
template for labels of requirements links to IBM Rational DOORS. The
default label template contains the section number and object heading
for the DOORS requirement link target. To revert the link label
template back to the default, enter rmi('setDoorsLabelTemplate',
'') at the MATLAB command prompt.

template = rmi('getDoorsLabelTemplate') returns the currently
specified custom template for labels of requirements links to IBM
Rational DOORS.

label = rmi('doorsLabel', moduleID, objectID) generates a label
for the requirements link to the IBM Rational DOORS object specified

1-135

rmi

by objectID in the DOORS module specified by moduleID, according
to the current template.

totalModifiedLinks = rmi('updateDoorsLabels', model) updates
all IBM Rational DOORS requirements links labels in model according
to the current template.

Input
Arguments

model - Simulink or Stateflow model with which requirements
can be associated
name | handle

Simulink or Stateflow model with which requirements can be
associated, specified as a string or handle.

Example: 'slvnvdemo_officereq'

Data Types
char

object - Model object with which requirements can be associated
name | handle

Model object with which requirements can be associated, specified as
a string or handle.

Example: 'slvnvdemo_fuelsys_htmreq/fuel rate
controller/Airflow calculation'

Data Types
char

sig_builder - Signal Builder block containing signal group with
requirements traceability associations
name | handle

Signal Builder block containing signal group with requirements
traceability associations, specified as a string or handle.

Data Types
char

1-136

rmi

group_idx - Signal Builder group index
integer

Signal Builder group index, specified as a scalar.

Example: 2

Data Types
char

matlabfilepath - MATLAB code file with requirements traceability
associations
path

MATLAB code file with requirements traceability associations, specified
as the path to the file.

Example:

Data Types
char

guidStr - Globally unique identifier for model object
string

Globally unique identifier for model object object, specified as a string.

Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

Data Types
char

index - Index number of requirement linked to model object
integer

Index number of requirement linked to model object, specified as an
integer.

docName - Requirements document in external application
file name | path

1-137

rmi

Requirements document in external application, specified as a string
that represents one of the following:

• IBM Rational DOORS module ID.

• path to Microsoft Word requirements document.

• path to Microsoft Excel requirements document.

For more information, see “Validate Requirements Links in a
Requirements Document”.

label - Label for links to requirements in IBM Rational DOORS
string

Example:

Data Types
char

template - Template label for links to requirements in IBM
Rational DOORS
string

Template label for links to requirements in IBM Rational DOORS,
specified as a string.

You can use the following format specifiers to include the associated
DOORS information in your requirements links labels:

%h Object heading

%t Object text

%p Module prefix

%n Object absolute number

%m Module ID

%P Project name

%M Module name

1-138

rmi

%U DOORS URL

%<ATTRIBUTE_NAME> Other DOORS attribute you
specify

Example: '%m:%n [backup=%<Backup>]'

Data Types
char

moduleID - IBM Rational DOORS module
DOORS module ID

IBM Rational DOORS module, specified as the unique DOORS module
ID.

Example:

Data Types
char

objectID - IBM Rational DOORS object
DOORS object ID

IBM Rational DOORS object in the DOORS module moduleID, specified
as the locally unique DOORS ID.

Example:

Data Types
char

Output
Arguments

reqlinks - Requirement links data
struct

Requirement links data, returned as a structure array with the
following fields:

1-139

rmi

doc String identifying requirements document

id String defining location in requirements document.
The first character specifies the identifier type:

First
Character

Identifier Example

? Search text, the
first occurrence of
which is located
in requirements
document

'?Requirement
1'

@ Named item, such
as bookmark in a
Microsoft Word file
or an anchor in an
HTML file

'@my_req'

Page or item
number

'#21'

> Line number '>3156'

$ Worksheet range in
a spreadsheet

'$A2:C5'

linked Boolean value specifying whether the requirement
link is accessible for report generation and
highlighting:

1 (default). Highlight model object and include
requirement link in reports.
0

description String describing the requirement

keywords Optional string supplementing description

reqsys String identifying the link type registration name;
'other' for built-in link types

1-140

rmi

cmdStr - Command string used to navigate to model object
string

Command string used to navigate to model object object, returned
as a string.

Example:
rmiobjnavigate('slvnvdemo_fuelsys_officereq.slx','GIDa_59e165f5_19fe_4

titleStr - Textual description of model object with requirements
links
string

Textual description of model object with requirements links, returned
as a string.

Example: slvnvdemo_fuelsys_officereq/.../Airflow
calculation/Pumping Constant (Lookup2D)

guidStr - Globally unique identifier for model object
string

Globally unique identifier for model object object, returned as a string.

Example: GIDa_59e165f5_19fe_41f7_abc1_39c010e46167

dialog - Requirements dialog box for model object
handle

Requirements dialog box for model object object, returned as a handle
to the dialog box.

number_problems - Total count of invalid links detected in
external document
integer

Total count of invalid links detected in external document docName.

For more information, see “Validate Requirements Links in a
Requirements Document”.

1-141

rmi

totalModifiedLinks - Total count of DOORS requirements links
updated with new label template
integer

Total count of DOORS requirements links updated with new label
template.

Examples Requirements Links Management in Example Model

Get a requirement associated with a block in the
slvnvdemo_fuelsys_htmreq model, change its description,
and save the requirement back to that block. Define a new requirement
link and add it to the existing requirements links in the block.

Get requirement link associated with the Airflow calculation block in
the slvnvdemo_fuelsys_htmreq example model.

slvnvdemo_fuelsys_htmreq;
blk_with_req = ['slvnvdemo_fuelsys_htmreq/fuel rate' 10 'controller/...

Airflow calculation'];
reqts = rmi('get', blk_with_req);

Change the description of the requirement link.

reqts.description = 'Mass airflow estimation';

Save the changed requirement link description for the Airflow
calculation block.

rmi('set', blk_with_req, reqts);

Create new requirement link to example document
fuelsys_requirements2.htm.

new_req = rmi('createempty');
new_req.doc = 'fuelsys_requirements2.htm';
new_req.description = 'A new requirement';

1-142

rmi

Add new requirement link to existing requirements links for the Airflow
calculation block.

rmi('cat', blk_with_req, new_req);

Requirements Traceability Report for Example Model

Create HTML report of requirements traceability data in example
model.

Create an HTML requirements report for the
slvnvdemo_fuelsys_htmreq example model.

rmi('report', 'slvnvdemo_fuelsys_htmreq');

The MATLAB Web browser opens, showing the report.

Labels for Requirements Links to IBM Rational DOORS

Specify a new label template for links to requirements in DOORS, and
update labels of all DOORS requirements links in your model to fit the
new template.

Specify a new label template for requirements links to IBM Rational
DOORS so that new links to DOORS objects are labeled with the
corresponding module ID, object absolute number, and the value of the
‘Backup’ attribute.

rmi('setDoorsLabelTemplate', '%m:%n [backup=%<Backup>]');

Update existing DOORS requirements link labels to match the new
specified template in your model example_model. When updating
labels, DOORS must be running and all linked modules must be
accessible for reading.

rmi('updateDoorsLabels', example_model);

1-143

rmi

See Also rmipref | rmiobjnavigate | rmidocrename | rmitag
| rmidata.default | rmidata.map | rmi.doorssync |
RptgenRMI.doorsAttribs

Concepts • “Requirements Management Interface Setup”
• “Maintenance of Requirements Links”

1-144

rmidata.default

Purpose Specify default storage location of requirements traceability data for
new models

Syntax rmidata.default(storage_setting)

Description rmidata.default(storage_setting) specifies whether requirements
traceability data for new Simulink models is stored in the model file
or in an external .req file. This function does not affect models that
already have saved requirements traceability data.

Input
Arguments

storage_setting

String that specifies where requirements traceability data for a model
is stored:

• 'internal'— Store requirements traceability data in the model file.

• 'external' — Store requirements traceability data in a separate
file. The default name for this file is model_name.req.

Examples Specify to store requirements traceability data in the model file:

rmidata.default('internal');

Specify to store requirements traceability data in an external .req file:

rmidata.default('external);

Alternatives To set the storage location from the Simulink Editor:

1 Select Analysis > Requirements > Settings.

2 Select the Storage tab.

3 Select one of the following options:

• Store internally (embedded in a model file)

1-145

rmidata.default

• Store externally (in a separate *.req file)

See Also rmi | rmidata.export | rmidata.map | rmidata.save

How To • “Specify Storage for Requirements Links”

• “Requirements Link Storage”

1-146

rmidata.export

Purpose Move requirements traceability data to external .req file

Syntax [total_linked,total_links] = rmidata.export
[total_linked,total_links] = rmidata.export(model)

Description [total_linked,total_links] = rmidata.export moves
requirements traceability data associated with the current Simulink
model to an external file named model_name.req. rmidata.export
saves the file in the same folder as the model. rmidata.export deletes
the requirements traceability data stored in the model and saves the
modified model.

[total_linked,total_links] = rmidata.export(model) moves
requirements traceability data associated with model to an external
file named model_name.req. rmidata.export saves the file in the same
folder as model. rmidata.export deletes the requirements traceability
data stored in the model and saves the modified model.

Input
Arguments

model

Name or handle of a Simulink model

Output
Arguments

total_linked

Integer indicating the number of objects in the model that have linked
requirements

total_links

Integer indicating the total number of requirements links in the model

Examples Move the requirements traceability data from the
slvnvdemo_fuelsys_officereq model to an external file:

rmidata.export('slvnvdemo_fuelsys_officereq');

See Also rmi | rmidata.save | rmidata.default | rmidata.map

1-147

rmidata.export

How To • “Specify Storage for Requirements Links”

• “Requirements Link Storage”

1-148

rmidata.map

Purpose Associate externally stored requirements traceability data with model

Syntax rmidata.map(model,reqts_file)
rmidata.map(model,'undo')
rmidata.map(model,'clear')

Description rmidata.map(model,reqts_file) associates the requirements
traceability data from reqts_file with the Simulink model model.

rmidata.map(model,'undo') removes from the .req file associated
with model the requirements traceability data that was most recently
saved in the .req file.

rmidata.map(model,'clear') removes from the .req file associated
with model all requirements traceability data.

Input
Arguments

model

Name, handle, or full path for a Simulink model

reqts_file

Full path to the .req file that contains requirements traceability data
for the model

Alternatives To load a file that contains requirements traceability data for a model:

1 Open the model.

2 Select Analysis > Requirements > Load Links.

1-149

rmidata.map

Note The Load Links menu item appears only when your model is
configured to store requirements data externally. To specify external
storage of requirements data for your model, in the Requirements
Settings dialog box under Storage > Default storage location for
requirements links data, select Store externally (in a separate
*.req file).

3 Browse to the .req file that contains the requirements links.

4 Click OK.

Examples Associate an external requirements traceability data file with a
Simulink model. After associating the information with the model, view
the objects with linked requirements by highlighting the model.

open_system('slvnvdemo_powerwindowController');
reqFile = fullfile(matlabroot, 'toolbox', 'slvnv', ...

'rmidemos', 'powerwin_reqs', ...
'slvnvdemo_powerwindowRequirements.req');

rmidata.map('slvnvdemo_powerwindowController', reqFile);
rmi('highlightModel', 'slvnvdemo_powerwindowController');

To clear the requirements you just associated with that model, run
this rmidata.map command:

rmidata.map('slvnvdemo_powerwindowController','clear');

See Also rmi | rmidata.save | rmidata.default | rmidata.export

How To • “Specify Storage for Requirements Links”

• “Requirements Link Storage”

1-150

rmidata.save

Purpose Save requirements traceability data in external .req file

Syntax rmidata.save(model)

Description rmidata.save(model) saves requirements traceability data for a
model in an external .req file. The model must be configured to store
requirements traceability data externally. This function is equivalent
to Analysis > Requirements > Save Links in the Simulink Editor.

Input
Arguments

model - Name or handle of model with requirements links
string | handle

Name of model with requirements links, specified as a string, or
handle to model with requirements links. The model must be loaded
into memory and configured to store requirements traceability data
externally.

If you have a new model with no existing requirements links, configure
it for external storage as described in “Specify Storage for Requirements
Links”. You can also use the rmidata.default command to specify
storage settings.

If you have an existing model with internally stored requirements
traceability data, convert that data to external storage as described
in “Move Internally Stored Requirements Links to External Storage”.
You can also use the rmidata.export command to convert existing
requirements traceability data to external storage.

Example: 'slvnvdemo_powerwindowController'

Example: get_param(gcs,'Handle')

Examples Create New Requirement Link and Save Externally

Add a requirement link to an existing example model, and save the
model requirements traceability data in an external file.

Open the example model, slvnvdemo_powerwindowController.

open_system('slvnvdemo_powerwindowController');

1-151

rmidata.save

Specify that the model store requirements data externally.

rmidata.default('external');

Create a new requirements link structure.

newReqLink = rmi('createEmpty');
newReqLink.description = 'newReqLink';

Specify the requirements document that you want to link to from the
model. In this case, an example requirements document is provided.

newReqLink.doc = [matlabroot '\toolbox\slvnv\rmidemos\' ...
'powerwin_reqs\PowerWindowSpecification.docx'];

Specify the text of the requirement within the document to which you
want to link.

newReqLink.id = '?passenger input consists of a vector' ...
'with three elements';

Specify that the new requirements link that you created be attached
to the Mux4 block of the slvnvdemo_powerwindowController example
model.

rmi('set', 'slvnvdemo_powerwindowController/Mux4', newReqLink);

Save the new requirement link that you just created in an external
.req file associated with the model.

rmidata.save('slvnvdemo_powerwindowController');

This function is equivalent to the Simulink Editor option
Analysis > Requirements > Save Links.

To highlight the Mux4 block, turn on requirements highlighting for the
slvnvdemo_powerwindowController example model.

rmi('highlightModel', 'slvnvdemo_powerwindowController');

1-152

rmidata.save

You can test your requirements link by right-clicking the Mux4 block.
In the context menu, select Requirements > 1. “newReqLink”.

Close the example model.

close_system('slvnvdemo_powerwindowController', 0);

You are not prompted to save unsaved changes because you saved the
requirements link data outside the model file. The model file remains
unchanged.

See Also rmidata.map | rmidata.default | rmidata.export

Related
Examples

• “Managing Requirements Without Modifying Simulink Model Files”

Concepts • “Requirements Link Storage”

1-153

rmidocrename

Purpose Update model requirements document paths and file names

Syntax rmidocrename(model_handle, old_path, new_path)
rmidocrename(model_name, old_path, new_path)

Description rmidocrename(model_handle, old_path, new_path) collectively
updates the links from a Simulink model to requirements files whose
names or locations have changed. model_handle is a handle to the
model that contains links to the files that you have moved or renamed.
old_path is a string that contains the existing full or partial file or
path name. new_path is a string with the new full or partial file or
path name.

rmidocrename(model_name, old_path, new_path) updates the
links to requirements files associated with model_name. You can pass
rmidocrename a model handle or a model file name.

When using the rmidocrename function, make sure to enter specific
strings for the old document name fragments so that you do not
inadvertently modify other links.

Examples For the current Simulink model, update all links to requirements
files that contain the string 'project_0220', replacing them with
'project_0221':

rmidocrename(gcs, 'project_0220', 'project_0221')

Processed 6 objects with requirements, 5 out of 13 links were modified.

Alternatives To update the requirements links one at a time, for each model object
that has a link:

1 For each object with requirements, open the Requirements
Traceability Link Editor by right-clicking and selecting
Requirements Traceability > Open Link Editor.

2 Edit the Document field for each requirement that points to a
moved or renamed document.

1-154

rmidocrename

3 Click Apply to save the changes.

See Also rmi

1-155

rmi.doorssync

Purpose Synchronize model with DOORS surrogate module

Syntax rmi.doorssync(model_name)
rmi.doorssync(model_name, settings)
current_settings = rmi.doorssync(model_name, 'settings')
current_settings = rmi.doorssync(model_name, [])
default_settings = rmi.doorssync([])

Description rmi.doorssync(model_name) opens the DOORS synchronization
settings dialog box. Select the options for synchronizing model_name
with an IBM Rational DOORS surrogate module and click
Synchronize.

Synchronizing a Simulink model with a DOORS surrogate module is
a user-initiated process that creates or updates a surrogate module in
a DOORS database. A surrogate module is a DOORS formal module
that is a representation of a Simulink model hierarchy. When you first
synchronize a model, the DOORS software creates a surrogate module.
Depending on your synchronization settings, the surrogate module
contains a representation of the model.

rmi.doorssync(model_name, settings) synchronizes model_name
with a DOORS surrogate module using the options that settings
specifies.

current_settings = rmi.doorssync(model_name, 'settings')
returns the current settings for model_name, but does not synchronize
the model with the DOORS surrogate module.

current_settings = rmi.doorssync(model_name, []) performs
synchronization with current settings known for model_name. If the
RMI has not synchronized the model previously, rmi.doorssync uses
the default settings.

default_settings = rmi.doorssync([]) returns a settings object
with the default values.

1-156

rmi.doorssync

Input
Arguments

model_name

Name or handle of a Simulink model

settings

Structure with the following fields.

Field Description

surrogatePath Path to a DOORS project in the form
'/PROJECT/FOLDER/MODULE'.)

The default, './$ModelName$', resolves to
the given model name under the current
DOORS project.

saveModel Saves the model after synchronization.

Default: 1

saveSurrogate Saves the modified surrogate module.

Default: 1

slToDoors Copies links from Simulink to the surrogate
module.

Default: 0

doorsToSl Copies links from the surrogate module to
Simulink.

If both doorsToSl and slToDoors are set to
1, an error occurs.

Default: 0

purgeSimulink Removes unmatched links in Simulink
(ignored if doorsToSl is set to 0).

rmi.doorssync ignores purgeSimulink if
doorsToSl is set to 0.

Default: 0

1-157

rmi.doorssync

Field Description

purgeDoors Removes unmatched links in the surrogate
module (ignored if slToDoors is set to 0).

Default: 0

detailLevel Specifies which objects with no links to
DOORS to include in the surrogate module.

Valid values are 1 through 6. 1 includes
only objects with requirements, for fast
synchronization. 6 includes all model objects,
for complete model representation in the
surrogate.

Default: 1

Output
Arguments

current_settings

The current values of the synchronization settings

default_settings

The default values of the synchronization settings

Examples Before running this example:

1 Start the DOORS software.

2 Create a new DOORS project or open an existing DOORS project.

After you complete the preceding steps, open the
slvnvdemo_fuelsys_officereq model, specify to copy the
links from the model to DOORS, and synchronize the model to create
the surrogate module:

slvnvdemo_fuelsys_officereq;
settings = rmi.doorssync('slvnvdemo_fuelsys_officereq', ...
'settings');

1-158

rmi.doorssync

settings.slToDoors = 1;
setting.purgeDoors = 1;
rmi.doorssync('slvnvdemo_fuelsys_officereq', settings);

Alternatives Instead of using rmi.doorssync, you can synchronize your Simulink
model with a DOORS surrogate module from the Simulink Editor:

1 Open the model.

2 Select Analysis > Requirements > Synchronize with DOORS.

3 In the DOORS synchronization settings dialog box, select the desired
synchronization settings.

4 Click Synchronize.

See Also rmi

How To • “Synchronize a Simulink Model to Create a Surrogate Module”

• “Resynchronize DOORS Surrogate Module to Reflect Model Changes”

1-159

rmi.objinfo

Purpose Return navigation information for model object

Syntax [navCmd, dispString] = rmi.objinfo(obj)

Description [navCmd, dispString] = rmi.objinfo(obj) returns navigation
information for the Simulink model object obj.

Input
Arguments

obj

Name or handle of a Simulink or Stateflow object.

Output
Arguments

navCmd

String that contains the MATLAB command that navigates to the
model object obj. Pass this command to the MATLAB Automation
server to highlight obj.

dispString

String that contains the name and path to the model object obj.

Examples Open the slvnvdemo_fuelsys_officereq example model, get the
unique identifier for the MAP Sensor block, and navigate to that block
using the rmiobjnavigate function:

slvnvdemo_fuelsys_officereq; % Open example model

gcb = ...

'slvnvdemo_fuelsys_officereq/MAP sensor'; % Make current block

[navCmdString, objPath] = rmi.objinfo(gcb); % Get rmiobjnavigate command

% and path

See Also rmi | rmiobjnavigate

1-160

rmiobjnavigate

Purpose Navigate to model objects using unique Requirements Management
Interface identifiers

Syntax rmiobjnavigate(modelPath, guId)
rmiobjnavigate(modelPath, guId, grpNum)

Description rmiobjnavigate(modelPath, guId) navigates to and highlights the
specified object in a Simulink model.

rmiobjnavigate(modelPath, guId, grpNum) navigates to the signal
group number grpNum of a Signal Builder block identified by guId
in the model modelPath.

Input
Arguments

modelPath

A full path to a Simulink model file, or a Simulink model file name that
can be resolved on the MATLAB path.

guId

A unique string that the RMI uses to identify a Simulink or Stateflow
object.

grpNum

Integer indicating a signal group number in a Signal Builder block

Examples Open the slvnvdemo_fuelsys_officereq example model, get the
unique identifier for the MAP Sensor block:

slvnvdemo_fuelsys_officereq; % Open example model

gcb = ...

'slvnvdemo_fuelsys_officereq/MAP sensor'; % Make current block

navCmdString = rmi.objinfo(gcb) % Get rmoobjnavigate command

% with model name and object ID

rmi.objinfo returns the following value for navCmdString:

navCmdString =

1-161

rmiobjnavigate

rmiobjnavigate('slvnvdemo_fuelsys_officereq.mdl', ...

'GIDa_9fc2c968_6068_49c6_968d_b08e363248b9');

Navigate to that block using the rmiobjnavigate command that
rmi.objinfo returned:

eval(navCmdString); % Execute rmiobjnavigate command

See Also rmi | rmi.objinfo

How To • “Use the rmiobjnavigate Function”

1-162

rmipref

Purpose Get or set RMI preferences stored in prefdir

Syntax rmipref

currentVal = rmipref(prefName)

previousVal = rmipref(Name,Value)

Description rmipref returns list of Name,Value pairs corresponding to
Requirements Management Interface (RMI) preference names and
accepted values for each preference.

currentVal = rmipref(prefName) returns the current value of the
preference specified by prefName.

previousVal = rmipref(Name,Value) sets a new value for the RMI
preference specified by Name, and returns the previous value of that
RMI preference.

Input
Arguments

prefName - RMI preference name
'BiDirectionalLinking' | 'FilterRequireTags' |
'CustomSettings' | ...

RMI preference name, specified as the corresponding Name string listed
in “Name-Value Pair Arguments” on page 1-163.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments.
Name is the argument name and Value is the corresponding value. Name
must appear inside single quotes (' ').

Example: 'BiDirectionalLinking',true enables bi-directional
linking for your model, so that when you create a selection-based link
to a requirements document, the RMI creates a corresponding link to
your model from the requirements document.

1-163

rmipref

’BiDirectionalLinking’ - Bi-directional selection linking preference
false (default) | true

Bi-directional selection linking preference, specified as a logical value.

This preference specifies whether to simultaneously create return link
from target to source when creating link from source to target. This
setting applies only for requirements document types that support
selection-based linking.

Data Types
logical

’DocumentPathReference’ - Preference for path format of links
to requirements documents from model
'modelRelative' (default) | 'absolute' | 'pwdRelative' | 'none'

Preference for path format of links to requirements documents from
model, specified as one of the following strings.

String Document reference
contains...

'absolute' full absolute path to requirements
document.

'pwdRelative' path relative to MATLAB current
folder.

'modelRelative' path relative to model file.

'none' document file name only.

For more information, see “Document Path Storage”.

Data Types
char

’ModelPathReference’ - Preference for path format in links to
model from requirements documents
'none' (default) | 'absolute'

1-164

rmipref

Preference for path format in links to model from requirements
documents, specified as one of the following strings.

String Model reference contains...

'absolute' full absolute path to model.

'none' model file name only.

Data Types
char

’LinkIconFilePath’ - Preference to use custom image file as
requirements link icon
empty string (default) | full image file path

Preference to use custom image file as requirements link icon, specified
as full path to icon or small image file. This image will be used for
requirements links inserted in external documents.

Data Types
char

’FilterEnable’ - Preference to enable filtering by user tag
keywords
false (default) | true

Preference to enable filtering by user tag keywords, specified as a
logical value. When you filter by user tag keywords, you can include
or exclude subsets of requirements links in highlighting or reports.
You can specify user tag keywords for requirements links filtering in
the 'FilterRequireTags' and 'FilterExcludeTags' preferences.
For more information about requirements filtering, see “Filter
Requirements with User Tags”.

Data Types
logical

’FilterRequireTags’ - Preference for user tag keywords for
requirements links

1-165

rmipref

empty string (default) | comma-separated list of user tag keywords

Preference for user tag keywords for requirements links, specified as
a comma-separated list of words or phrases in a string. These user
tags apply to all new requirements links you create. Requirements
links with these user tags are included in model highlighting and
reports. For more information about requirements filtering, see “Filter
Requirements with User Tags”.

Data Types
char

’FilterExcludeTags’ - Preference to exclude certain requirements
links from model highlighting and reports
empty string (default) | comma-separated list of user tag keywords

Preference to exclude certain requirements links from model
highlighting and reports, specified as a comma-separated list of user
tag keywords. Requirements links with these user tags are excluded
from model highlighting and reports. For more information about
requirements filtering, see “Filter Requirements with User Tags”.

Data Types
char

’FilterMenusByTags’ - Preference to disable labels of requirements
links with designated user tags
false (default) | true

Preference to disable labels of requirements links with designated
user tags, specified as a logical value. When set to true, if a
requirement link has a user tag designated in 'FilterExcludeTags' or
'FilterRequireTags', that requirements link will be disabled in the
Requirements context menu. For more information about requirements
filtering, see “Filter Requirements with User Tags”.

Data Types
logical

1-166

rmipref

’FilterConsistencyChecking’ - Preference to filter Model Advisor
requirements consistency checks with designated user tags
false (default) | true

Preference to filter Model Advisor requirements consistency checks with
designated user tags, specified as a logical value. When set to true,
Model Advisor requirements consistency checks include requirements
links with user tags designated in 'FilterRequireTags' and excludes
requirements links with user tags designated in 'FilterExcludeTags'.
For more information about requirements filtering, see “Filter
Requirements with User Tags”.

Data Types
logical

’KeepSurrogateLinks’ - Preference to keep DOORS surrogate
links when deleting all requirements links
empty (default) | false | true

Preference to keep DOORS surrogate links when deleting all
requirements links, specified as a logical value. When set to true,
selecting Requirements > Delete All Links deletes all requirements
links including DOORS surrogate module requirements links. When
not set to true or false, selecting Requirements > Delete All Links
opens a dialog box with a choice to keep or delete DOORS surrogate
links.

Data Types
logical

’ReportFollowLibraryLinks’ - Preference to include requirements
links in referenced libraries in generated report
false (default) | true

Preference to include requirements links in referenced libraries in
generated report, specified as a logical value. When set to true,
generated requirements reports include requirements links in
referenced libraries.

1-167

rmipref

Data Types
logical

’ReportHighlightSnapshots’ - Preference to include highlighting
in model snapshots in generated report
true (default) | false

Preference to include highlighting in model snapshots in generated
report, specified as a logical value. When set to true, snapshots of
model objects in generated requirements reports include highlighting of
model objects with requirements links.

Data Types
logical

’ReportNoLinkItems’ - Preference to include model objects with
no requirements links in generated requirements reports
false (default) | true

Preference to include model objects with no requirements links in
generated requirements reports, specified as a logical value. When set
to true, generated requirements reports include lists of model objects
that have no requirements links.

Data Types
logical

’ReportUseDocIndex’ - Preference to include short document ID
instead of full path to document in generated requirements
reports
false (default) | true

Preference to include short document ID instead of full path to document
in generated requirements reports, specified as a logical value. When
set to true, generated requirements reports include short document
IDs, when specified, instead of full paths to requirements documents.

Data Types
logical

1-168

rmipref

’ReportIncludeTags’ - Preference to list user tags for requirements
links in generated reports
false (default) | true

Preference to list user tags for requirements links in generated reports,
specified as a logical value. When set to true, generated requirements
reports include user tags specified for each requirement link. For more
information about requirements filtering, see “Filter Requirements
with User Tags”.

Data Types
logical

’ReportDocDetails’ - Preference to include extra detail from
requirements documents in generated reports
false (default) | true

Preference to include extra detail from requirements documents in
generated reports, specified as a logical value. When set to true,
generated requirements reports load linked requirements documents
to include additional information about linked requirements. This
preference applies to Microsoft Word, Microsoft Excel, and IBM
Rational DOORS requirements documents only.

Data Types
logical

’ReportLinkToObjects’ - Preference to include links to model
objects in generated requirements reports
false (default) | true

Preference to include links to model objects in generated requirements
reports, specified as a logical value. When set to true, generated
requirements reports include links to model objects. These links work
only if the MATLAB internal HTTP server is active.

Data Types
logical

1-169

rmipref

’SelectionLinkWord’ - Preference to include Microsoft Word
selection link option in Requirements context menu
true (default) | false

Preference to include Microsoft Word selection link option in
Requirements context menu, specified as a logical value.

Data Types
logical

’SelectionLinkExcel’ - Preference to include Microsoft Excel
selection link option in Requirements context menu
true (default) | false

Preference to include Microsoft Excel selection link option in
Requirements context menu, specified as a logical value.

Data Types
logical

’SelectionLinkDoors’ - Preference to include IBM Rational DOORS
selection link option in Requirements context menu
true (default) | false

Preference to include IBM Rational DOORS selection link option in
Requirements context menu, specified as a logical value.

Data Types
logical

’SelectionLinkTag’ - Preference for user tags to apply to new
selection-based requirements links
empty string (default) | comma-separated list of user tag keywords

Preference for user tags to apply to new selection-based requirements
links, specified as a comma-separated list of words or phrases in a
string. These user tags automatically apply to new selection-based
requirements links that you create. For more information about
requirements filtering, see “Filter Requirements with User Tags”.

1-170

rmipref

Data Types
char

’StoreDataExternally’ - Preference to store requirements links
data in external .req file
false (default) | true

Preference to store requirements links data in external .req file,
specified as a logical value. This setting applies to all new models
and to existing models that do not yet have requirements links.
For more information about storage of requirements links data, see
“Requirements Link Storage” and “Specify Storage for Requirements
Links”.

Data Types
logical

’UseActiveXButtons’ - Preference to use legacy ActiveX® buttons
in Microsoft Office requirements documents
false (default) | true

Preference to use legacy ActiveX buttons in Microsoft Office
requirements documents, specified as a logical value. The default value
of this preference is false; requirements links are URL-based by
default. ActiveX requirements navigation is supported for backward
compatibility. For more information on legacy ActiveX navigation, see
“Navigate with Objects Created Using ActiveX in Microsoft Office 2007
and 2010”.

Data Types
logical

’CustomSettings’ - Preference for storing custom settings
inUse: 0 (default) | structure array of custom field names and
settings

Preference for storing custom settings, specified as a structure array.
Each field of the structure array corresponds to the name of your

1-171

rmipref

custom preference, and each associated value corresponds to the value
of that custom preference.

Data Types
struct

Output
Arguments

currentVal - Current value of the RMI preference specified by
prefName
true | false | 'absolute' | 'none' | ...

Current value of the RMI preference specified by prefName. RMI
preference names and their associated possible values are listed in
“Name-Value Pair Arguments” on page 1-163.

previousVal - Previous value of the RMI preference specified
by prefName
true | false | 'absolute' | 'none' | ...

Previous value of the RMI preference specified by prefName. RMI
preference names and their associated possible values are listed in
“Name-Value Pair Arguments” on page 1-163.

Examples References to Simulink Model in External Requirements
Documents

Choose the type of reference that the RMI uses when it creates links
to your model from external requirements documents. The reference
to your model can be either the model file name or the full absolute
path to the model file.

The value of the 'ModelPathReference' preference determines how
the RMI stores references to your model in external requirements
documents. To view the current value of this preference, enter the
following code at the MATLAB command prompt.

currentVal = rmipref('ModelPathReference')

The default value of the 'ModelPathReference' preference is 'none'.

1-172

rmipref

currentVal =

none

This default value specifies that the RMI uses only the model file name
in references to your model that it creates in external requirements
documents.

Automatic Application of User Tags to Selection-Based
Requirements Links

Configure the RMI to automatically apply a specified list of user tag
keywords to new selection-based requirements links that you create.

Specify that the user tags design and reqts apply to new
selection-based requirements links that you create.

previousVal = rmipref('SelectionLinkTag','design,reqts')

When you specify a new value for an RMI preference, rmipref returns
the previous value of that RMI preference. In this case, previousVal
is an empty string, the default value of the 'SelectionLinkTag'
preference.

previousVal =

''

View the currently specified value for the 'SelectionLinkTag'
preference.

currentVal = rmipref('SelectionLinkTag')

The function returns the currently specified comma-separated list of
user tags.

currentVal =

design,reqts

1-173

rmipref

These user tags apply to all new selection-based requirements links
that you create.

External Storage of Requirements Traceability Data

Configure the RMI to store requirements links data in a separate .req
file, instead of embedded in the model file.

Note If you have existing requirements links for your model that
are stored internally, you need to move these links into an external
.req file before you change the storage settings for your requirements
traceability data. See “Move Internally Stored Requirements Links to
External Storage” for more information.

If you would like to store requirements traceability data in a separate
.req file, set the 'StoreDataExternally' preference to 1.

previousVal = rmipref('StoreDataExternally',1)

When you specify a new value for an RMI preference, rmipref returns
the previous value of that RMI preference. By default, the RMI stores
requirements links data internally with the model, so the previous
value of this preference was 0.

previousVal =

0

After you set the 'StoreDataExternally' preference to 1, your
requirements links are stored externally, in a separate .req file.

currentVal = rmipref('StoreDataExternally')

currentVal =

1

1-174

rmipref

See Also rmi

Concepts • “Requirements Settings”

1-175

rmiref.insertRefs

Purpose Insert links to models into requirements documents

Syntax [total_links, total_matches,
total_inserted] = rmiref.insertRefs(model_name,

doc_type)

Description [total_links, total_matches, total_inserted] =
rmiref.insertRefs(model_name, doc_type) inserts ActiveX controls
into the open, active requirements document of type doc_type. These
controls correspond to links from model_name to the document. With
these controls, you can navigate from the requirements document to
the model.

Input
Arguments

model_name

Name or handle of a Simulink model

doc_type

A string that indicates the requirements document type:

• 'word'

• 'excel'

Examples Remove the links in an example requirements document, and then
reinsert them:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open the example requirements document:

open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/',...

'slvnvdemo_FuelSys_DesignDescription.docx')])

3 Remove the links from the requirements document:

1-176

rmiref.insertRefs

rmiref.removeRefs('word')

4 Enter y to confirm the removal.

5 Reinsert the links from the requirements document to the model:

[total_links, total_matches, total_inserted] = ...

rmiref.insertRefs(gcs, 'word')

See Also rmiref.removeRefs

1-177

rmiref.removeRefs

Purpose Remove links to models from requirements documents

Syntax rmiref.removeRefs(doc_type)

Description rmiref.removeRefs(doc_type) removes all links to models from the
open, active requirements document of type doc_type.

Input
Arguments

doc_type

A string that indicates the requirements document type:

• 'word'

• 'excel'

• 'doors'

Examples Remove the links in this example requirements document:

open([matlabroot strcat('/toolbox/slvnv/rmidemos/fuelsys_req_docs/', ...

'slvnvdemo_FuelSys_DesignDescription.docx')])

rmiref.removeRefs('word')

See Also rmiref.insertRefs

1-178

rmitag

Purpose Manage user tags for requirements links

Syntax rmitag(model, 'list')
rmitag(model, 'add', tag)
rmitag(model, 'add', tag, doc_pattern)
rmitag(model, 'delete', tag)
rmitag(model, 'delete', tag, doc_pattern)
rmitag(model, 'replace', tag, new_tag)
rmitag(model, 'replace', tag, new_tag, doc_pattern)
rmitag(model, 'clear', tag)
rmitag(model, 'clear', tag, doc_pattern)

Description rmitag(model, 'list') lists all user tags in model.

rmitag(model, 'add', tag) adds a string tag as a user tag for all
requirements links in model.

rmitag(model, 'add', tag, doc_pattern) adds tag as a user tag
for all links in model, where the full or partial document name matches
the regular expression doc_pattern.

rmitag(model, 'delete', tag) removes the user tag, tag from all
requirements links in model.

rmitag(model, 'delete', tag, doc_pattern) removes the user tag,
tag, from all requirements links in model, where the full or partial
document name matches doc_pattern.

rmitag(model, 'replace', tag, new_tag) replaces tag with
new_tag for all requirements links in model.

rmitag(model, 'replace', tag, new_tag, doc_pattern) replaces
tag with new_tag for links in model, where the full or partial
document name matches the regular expression doc_pattern.

rmitag(model, 'clear', tag) deletes all requirements links that
have the user tag, tag.

rmitag(model, 'clear', tag, doc_pattern) deletes all
requirements links that have the user tag, tag, and link to the full or
partial document name specified in doc_pattern.

1-179

rmitag

Input
Arguments

model

Name of or handle to Simulink or Stateflow model with which
requirements are associated.

tag

String specifying user tag for requirements links.

doc_pattern

Regular expression to match in the linked requirements document
name. Not case sensitive.

new_tag

String that indicates the name of a user tag for a requirements link. Use
this argument when replacing an existing user tag with a new user tag.

Examples Open the slvnvdemo_fuelsys_officereq example model, and add the
user tag tmptag to all objects with requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'add', 'tmptag');

Remove the user tag test from all requirements links:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'delete', 'test');

Delete all requirements links that have the user tag design:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'clear', 'design');

1-180

rmitag

Change all instances of the user tag tmptag to safety requirement,
where the document filename extension is .docx:

open_system('slvnvdemo_fuelsys_officereq');
rmitag(gcs, 'replace', 'tmptag', ...

'safety requirements', '\.docx');

See Also rmi | rmidocrename

How To • “User Tags and Requirements Filtering”

1-181

RptgenRMI.doorsAttribs

Purpose IBM Rational DOORS attributes in requirements report

Syntax RptgenRMI.doorsAttribs (action,attribute)

Description RptgenRMI.doorsAttribs (action,attribute) specifies which
DOORS object attributes to include in the generated requirements
report.

Input
Arguments

action

String that specifies the desired action for what content to include from
a DOORS record in the generated requirements report. Valid values
for this argument are as follows.

Value Description

'default' Restore the default settings for the DOORS
system attributes to include in the report.

The default configuration includes the Object
Heading and Object Text attributes, and all
other attributes, except:

• Created Thru

• System attributes with empty string values

• System attributes that are false

'show' Display the current settings for the DOORS
attributes to include in the report.

1-182

RptgenRMI.doorsAttribs

Value Description

'type' Include or omit groups of DOORS attributes
from the report.

If you specify 'type' for the first argument,
valid values for the second argument are:

• 'all' — Include all DOORS attributes in
the report.

• 'user'— Include only user-defined DOORS
in the report.

• 'none' — Omit all DOORS attributes from
the report.

'remove' Omit specified DOORS attributes from the
report.

'all' Include specified DOORS attributes in the
report, even if that attribute is currently
excluded as part of a group.

'nonempty' Enable or disable the empty attribute filter:

• Enter
RptgenRMI.doorsAttribs('nonempty',
'off') to omit all empty attributes from
the report.

• Enter
RptgenRMI.doorsAttribs('nonempty',
'on') to include empty user-defined
attributes. The report never includes empty
system attributes.

attribute

String that qualifies the action argument.

1-183

RptgenRMI.doorsAttribs

Output
Arguments

result

• True if RptgenRMI.doorsAttribs modifies the current settings.

• For RptgenRMI.doorsAttribs('show'), this argument is a cell
array of strings that indicate which DOORS attributes to include in
the requirements report, for example:

>> RptgenRMI.doorsAttribs('show')

ans =

'Object Heading'
'Object Text'
'$AllAttributes$'
'$NonEmpty$'
'-Created Thru'

- The Object Heading and Object Text attributes are included
by default.

- '$AllAttributes$' specifies to include all attributes associated
with each DOORS object.

- '$Nonempty$' specifies to exclude all empty attributes.

- '-Created Thru' specifies to exclude the Created Thru attribute
for each DOORS object.

Examples Limit the DOORS attributes in the requirements report to user-defined
attributes:

RptgenRMI.doorsAttribs('type', 'user');

Omit the content of the Last Modified By attribute from the
requirements report:

RptgenRMI.doorsAttribs('remove', 'Last Modified By');

1-184

RptgenRMI.doorsAttribs

Include the content of the Last Modified On attribute in the
requirements report, even if system attributes are not included as
a group:

RptgenRMI.doorsAttribs('add', 'Last Modified On');

Include empty system attributes in the requirements report:

RptgenRMI.doorsAttribs('nonempty', 'off');

Omit the Object Heading attribute from the requirements report.
Use this option when the link label is always the same as the Object
Heading for the target DOORS object and you do not want duplicate
information in the requirements report:

RptgenRMI.doorsAttribs('remove', 'Object Heading');

See Also rmi

1-185

ModelAdvisor.Check.setAction

Purpose Specify action for check

Syntax setAction(check_obj, action_obj)

Description setAction(check_obj, action_obj) returns the action object
action.obj to use in the check check_obj. The setAction method
identifies the action you want to use in a check.

See Also ModelAdvisor.Action | “Model Advisor Customization”

How To • “Authoring Checks”

1-186

ModelAdvisor.Paragraph.setAlign

Purpose Specify paragraph alignment

Syntax setAlign(paragraph, alignment)

Description setAlign(paragraph, alignment) specifies the alignment of text.
Possible values are:

• 'left' (default)

• 'right'

• 'center'

Examples report_paragraph = ModelAdvisor.Paragraph;
setAlign(report_paragraph, 'center');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-187

ModelAdvisor.Text.setBold

Purpose Specify bold text

Syntax setBold(text, mode)

Description setBold(text, mode) specifies whether text should be formatted in
bold font.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating bold formatting
of text:

• true— Format the text in bold font.

• false—Do not format the text in bold font.

Examples t1 = ModelAdvisor.Text('This is some text');
setBold(t1, 'true');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-188

ModelAdvisor.Action.setCallbackFcn

Purpose Specify action callback function

Syntax setCallbackFcn(action_obj, @handle)

Description setCallbackFcn(action_obj, @handle) specifies the handle to the
callback function, handle, to use with the action object, action_obj.

Examples
Note The following example is a fragment of code from the
sl_customization.m file for the example model, slvnvdemo_mdladv.
The example does not execute as shown without the additional content
found in the sl_customization.m file.

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

% Define an automatic fix action for this check

modifyAction = ModelAdvisor.Action;

modifyAction.setCallbackFcn(@modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

modifyAction.Description = ['Modify model configuration optimization' ...

' settings that can impact safety'];

modifyAction.Enable = true;

rec.setAction(modifyAction);

See Also “Model Advisor Customization”

How To • “Define Check Actions”

• “Authoring Checks”

• “setActionEnable”

1-189

ModelAdvisor.Check.setCallbackFcn

Purpose Specify callback function for check

Syntax setCallbackFcn(check_obj, @handle, context, style)

Description setCallbackFcn(check_obj, @handle, context, style) specifies
the callback function to use with the check, check_obj.

Input
Arguments

check_obj Instantiation of the ModelAdvisor.Check
class

handle Handle to a check callback function

context Context for checking the model or subsystem:

• 'None'— No special requirements.

• 'PostCompile' — The model must be
compiled.

style Type of callback function:

• 'StyleOne' — Simple check callback
function, for formatting results using
template

• 'StyleTwo' — Detailed check callback
function

• 'StyleThree'— Check callback functions
with hyperlinked results

Examples % --- sample check 1

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

See Also “Model Advisor Customization”

1-190

ModelAdvisor.Check.setCallbackFcn

How To • “Create Callback Functions and Results”

• “Authoring Checks”

1-191

ModelAdvisor.Task.setCheck

Purpose Specify check used in task

Syntax setCheck(task, check_ID)

Description setCheck(task, check_ID) specifies the check to use in the task.

You can use one ModelAdvisor.Check object in multiple
ModelAdvisor.Task objects, allowing you to place the same check in
multiple locations in the Model Advisor tree. For example, Check for
implicit signal resolution appears in the By Product > Simulink
folder and in the By Task > Model Referencing folder in the Model
Advisor tree.

When adding checks as tasks, the Model Advisor uses the task
properties instead of the check properties, except for Visible and
LicenseName.

Input
Arguments

task Instantiation of the ModelAdvisor.Task class

check_ID A unique string that identifies the check to
use in the task

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
setCheck(MAT1, 'com.mathworks.sample.Check1');

1-192

ModelAdvisor.FormatTemplate.setCheckText

Purpose Add description of check to result

Syntax setCheckText(ft_obj, text)

Description setCheckText(ft_obj, text) is an optional method that adds text or
a model advisor template object as the first item in the report. Use this
method to add information describing the overall check.

Input
Arguments

ft_obj

A handle to a template object.

text

A string or a handle to a formatting object.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

text appears as the first line in the analysis result.

Examples Create a list object, ft, and add a line of text to the result:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setCheckText(ft, ['Identify unconnected lines, input ports,'...

'and output ports in the model']);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-193

ModelAdvisor.Table.setColHeading

Purpose Specify table column title

Syntax setColHeading(table, column, heading)

Description setColHeading(table, column, heading) specifies that the column
header of column is set to heading.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

column An integer specifying the column number

heading A string, element object, or object array
specifying the table column title

Examples table1 = ModelAdvisor.Table(2, 3);
setColHeading(table1, 1, 'Header 1');
setColHeading(table1, 2, 'Header 2');
setColHeading(table1, 3, 'Header 3');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-194

ModelAdvisor.Table.setColHeadingAlign

Purpose Specify column title alignment

Syntax setColHeadingAlign(table, column, alignment)

Description setColHeadingAlign(table, column, alignment) specifies the
alignment of the column heading.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

column An integer specifying the column number

alignment Alignment of the column heading. alignment
can have one of the following values:

• left (default)

• right

• center

Examples table1 = ModelAdvisor.Table(2, 3);
setColHeading(table1, 1, 'Header 1');
setColHeadingAlign(table1, 1, 'center');
setColHeading(table1, 2, 'Header 2');
setColHeadingAlign(table1, 2, 'center');
setColHeading(table1, 3, 'Header 3');
setColHeadingAlign(table1, 3, 'center');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-195

ModelAdvisor.Table.setColHeadingValign

Purpose Specify column title vertical alignment

Syntax setColHeadingValign(table, column, alignment)

Description setColHeadingValign(table, column, alignment) specifies the
vertical alignment of the column heading.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

column An integer specifying the column number

alignment Vertical alignment of the column heading.
alignment can have one of the following
values:

• top (default)

• middle

• bottom

Examples table1 = ModelAdvisor.Table(2, 3);
setColHeading(table1, 1, 'Header 1');
setColHeadingValign(table1, 1, 'middle');
setColHeading(table1, 2, 'Header 2');
setColHeadingValign(table1, 2, 'middle');
setColHeading(table1, 3, 'Header 3');
setColHeadingValign(table1, 3, 'middle');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-196

ModelAdvisor.Text.setColor

Purpose Specify text color

Syntax setColor(text, color)

Description setColor(text, color) sets the text color to color.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

color An enumerated string specifying the color of
the text. Possible formatting options include:

• normal (default) — Text is default color.

• pass — Text is green.

• warn — Text is yellow.

• fail — Text is red.

• keyword — Text is blue.

Examples t1 = ModelAdvisor.Text('This is a warning');
setColor(t1, 'warn');

1-197

ModelAdvisor.InputParameter.setColSpan

Purpose Specify number of columns for input parameter

Syntax setColSpan(input_param, [start_col end_col])

Description setColSpan(input_param, [start_col end_col]) specifies the
number of columns that the parameter occupies. Use the setColSpan
method to specify where you want an input parameter located in the
layout grid when there are multiple input parameters.

Input
Arguments

input_param Instantiation of the
ModelAdvisor.InputParameter class

start_col A positive integer representing the first
column that the input parameter occupies in
the layout grid

end_col A positive integer representing the last
column that the input parameter occupies in
the layout grid

Examples inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);

1-198

ModelAdvisor.FormatTemplate.setColTitles

Purpose Add column titles to table

Syntax setColTitles(ft_obj, {col_title_1, col_title_2, ...})

Description setColTitles(ft_obj, {col_title_1, col_title_2, ...}) is
method you must use when you create a template object that is a table
type. Use it to specify the titles of the columns in the table.

Note Before adding data to a table, you must specify column titles.

Input
Arguments

ft_obj

A handle to a template object.

col_title_N

A cell of strings or handles to formatting objects, specifying the
column titles.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The order of the col_title_N inputs determines which column
the title is in. If you do not add data to the table, the Model
Advisor does not display the table in the result.

Examples Create a table object, ft, and specify two column titles:

ft = ModelAdvisor.FormatTemplate('TableTemplate');

setColTitles(ft, {'Index', 'Block Name'});

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-199

ModelAdvisor.FormatTemplate.setColTitles

• “Format Model Advisor Results”

1-200

ModelAdvisor.Table.setColWidth

Purpose Specify column widths

Syntax setColWidth(table, column, width)

Description setColWidth(table, column, width) specifies the column.

The setColWidth method specifies the table column widths relative to
the entire table width. If column widths are [1 2 3], the second column
is twice the width of the first column, and the third column is three
times the width of the first column. Unspecified columns have a default
width of 1. For example:

setColWidth(1, 1);
setColWidth(3, 2);

specifies [1 1 2] column widths.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

column An integer specifying column number

width An integer or array of integers specifying the
column widths, relative to the entire table
width

Examples table1 = ModelAdvisor.Table(2, 3)
setColWidth(table1, 1, 1);
setColWidth(table1, 3, 2);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-201

ModelAdvisor.Table.setEntries

Purpose Set contents of table

Syntax setEntries(content)

Description setEntries(content)

Input
Arguments

content A 2–D cell array containing the contents
of the table. Each item of the cell array
must be either a string or an instance of
ModelAdvisor.Element. The size of the
cell array must be equal to the size of the
table specified in the ModelAdvisor.Table
constructor.

Examples table = ModelAdvisor.Table(4,3);

contents = cell(4,3); % 4 by 3 table

for k=1:4

for m=1:3

contents{k,m} = ['Contents for row-' num2str(k) ' column-' num2str(m)];

end

end

table.setEntries(contents);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-202

ModelAdvisor.Table.setEntry

Purpose Add cell to table

Syntax setEntry(table, row, column, string)
setEntry(table, row, column, content)

Description setEntry(table, row, column, string) adds a string to a cell in
a table.

setEntry(table, row, column, content) adds an object specified by
content to a cell in a table.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

row An integer specifying the row

column An integer specifying the column

string A string representing the contents of the entry

content An element object or object array specifying
the content of the table entries

Examples Create two tables and insert table2 into the first cell of table1:

table1 = ModelAdvisor.Table(1, 1);
table2 = ModelAdvisor.Table(2, 3);
.
.
.
setEntry(table1, 1, 1, table2);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-203

ModelAdvisor.Table.setEntryAlign

Purpose Specify table cell alignment

Syntax setEntryAlign(table, row, column, alignment)

Description setEntryAlign(table, row, column, alignment) specifies the cell
alignment of the designated cell.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number

column An integer specifying column number

alignment A string specifying the cell alignment.
Possible values are:

• left (default)

• right

• center

Examples table1 = ModelAdvisor.Table(2,3);
setHeading(table1, 'New Table');
.
.
.
setEntry(table1, 1, 1, 'First Entry');
setEntryAlign(table1, 1, 1, 'center');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-204

ModelAdvisor.Table.setEntryValign

Purpose Specify table cell vertical alignment

Syntax setEntryValign(table, row, column, alignment)

Description setEntryValign(table, row, column, alignment) specifies the cell
alignment of the designated cell.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number

column An integer specifying column number

alignment A string specifying the cell vertical alignment.
Possible values are:

• top (default)

• middle

• bottom

Examples table1 = ModelAdvisor.Table(2,3);
setHeading(table1, 'New Table');
.
.
.
setEntry(table1, 1, 1, 'First Entry');
setEntryValign(table1, 1, 1, 'middle');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-205

ModelAdvisor.Table.setHeading

Purpose Specify table title

Syntax setHeading(table, title)

Description setHeading(table, title) specifies the table title.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

title A string, element object, or object array that
specifies the table title

Examples table1 = ModelAdvisor.Table(2, 3);
setHeading(table1, 'New Table');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-206

ModelAdvisor.Table.setHeadingAlign

Purpose Specify table title alignment

Syntax setHeadingAlign(table, alignment)

Description setHeadingAlign(table, alignment) specifies the alignment for the
table title.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

alignment A string specifying the table title alignment.
Possible values are:

• left (default)

• right

• center

Examples table1 = ModelAdvisor.Table(2, 3);
setHeading(table1, 'New Table');
setHeadingAlign(table1, 'center');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-207

ModelAdvisor.Image.setHyperlink

Purpose Specify hyperlink location

Syntax setHyperlink(image, url)

Description setHyperlink(image, url) specifies the target location of the
hyperlink associated with image.

Input
Arguments

image Instantiation of the ModelAdvisor.Image
class

url A string specifying the target URL

Examples matlab_logo=ModelAdvisor.Image;
setHyperlink(matlab_logo, 'http://www.mathworks.com');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-208

ModelAdvisor.Text.setHyperlink

Purpose Specify hyperlinked text

Syntax setHyperlink(text, url)

Description setHyperlink(text, url) creates a hyperlink from the text to the
specified URL.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

url A string that specifies the target location of
the URL

Examples t1 = ModelAdvisor.Text('MathWorks home page');
setHyperlink(t1, 'http://www.mathworks.com');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-209

ModelAdvisor.Image.setImageSource

Purpose Specify image location

Syntax setImageSource(image_obj, source)

Description setImageSource(image_obj, source) specifies the location of the
image.

Input
Arguments

image_obj Instantiation of the ModelAdvisor.Image
class

source A string specifying the location of the image
file

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-210

ModelAdvisor.FormatTemplate.setInformation

Purpose Add description of subcheck to result

Syntax setInformation(ft_obj, text)

Description setInformation(ft_obj, text) is an optional method that adds
text as the first item after the subcheck title. Use this method to add
information describing the subcheck.

Input
Arguments

ft_obj

A handle to a template object.

text

A string or a handle to a formatting object, that describes the
subcheck.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The Model Advisor displays text after the title of the subcheck.

Examples Create a list object, ft, and specify a subcheck title and description:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft, ['Check for constructs in the model '...

'that are not supported when generating code']);

setInformation(ft, ['Identify blocks that should not '...

'be used for code generation.']);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-211

ModelAdvisor.Check.setInputParameters

Purpose Specify input parameters for check

Syntax setInputParameters(check_obj, params)

Description setInputParameters(check_obj, params) specifies
ModelAdvisor.InputParameter objects (params) to be used
as input parameters to a check (check_obj).

Input
Arguments

check_obj Instantiation of the ModelAdvisor.Check
class

params A cell array of
ModelAdvisor.InputParameters objects

Examples rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
inputParam1 = ModelAdvisor.InputParameter;
inputParam2 = ModelAdvisor.InputParameter;
inputParam3 = ModelAdvisor.InputParameter;
setInputParameters(rec, {inputParam1,inputParam2,inputParam3});

See Also ModelAdvisor.InputParameter | “Model Advisor Customization”

How To • “Authoring Checks”

1-212

ModelAdvisor.Check.setInputParametersLayoutGrid

Purpose Specify layout grid for input parameters

Syntax setInputParametersLayoutGrid(check_obj, [row col])

Description setInputParametersLayoutGrid(check_obj, [row col]) specifies
the layout grid for input parameters in the Model Advisor. Use the
setInputParametersLayoutGrid method when there are multiple
input parameters.

Input
Arguments

check_obj Instantiation of the ModelAdvisor.Check
class

row Number of rows in the layout grid

col Number of columns in the layout grid

Examples % --- sample check 1

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

rec.Title = 'Check Simulink block font';

rec.TitleTips = 'Example style three callback';

rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');

rec.setInputParametersLayoutGrid([3 2]);

See Also ModelAdvisor.InputParameter | “Model Advisor Customization”

How To • “Authoring Checks”

1-213

ModelAdvisor.Text.setItalic

Purpose Italicize text

Syntax setItalic(text, mode)

Description setItalic(text, mode) specifies whether text should be italicized.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating italic formatting
of text:

• true — Italicize the text.

• false— Do not italicize the text.

Examples t1 = ModelAdvisor.Text('This is some text');
setItalic(t1, 'true');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-214

ModelAdvisor.FormatTemplate.setListObj

Purpose Add list of hyperlinks to model objects

Syntax setListObj(ft_obj, {model_obj})

Description setListObj(ft_obj, {model_obj}) is an optional method that
generates a bulleted list of hyperlinks to model objects. ft_obj is a
handle to a list template object. model_obj is a cell array of handles or
full paths to blocks, or model objects that the Model Advisor displays
as a bulleted list of hyperlinks in the report.

Examples Create a list object, ft, and add a list of the blocks found in the model:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Find all the blocks in the system

allBlocks = find_system(system);

% Add the blocks to a list

setListObj(ft, allBlocks);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-215

ModelAdvisor.FormatTemplate.setRecAction

Purpose Add Recommended Action section and text

Syntax setRecAction(ft_obj, {text})

Description setRecAction(ft_obj, {text}) is an optional method that adds a
Recommended Action section to the report. Use this method to describe
how to fix the check.

Input
Arguments

ft_obj

A handle to a template object.

text

A cell array of strings or handles to formatting objects, that
describes the recommended action to fix the issues reported by
the check.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The Model Advisor displays the recommended action as a separate
section below the list or table in the report.

Examples Create a list object, ft, find Gain blocks in the model, and recommend
changing them:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Find all Gain blocks

gainBlocks = find_system(gcs, 'BlockType','Gain');

% Find Gain blocks

for idx = 1:length(gainBlocks)

gainObj = get_param(gainBlocks(idx), 'Object');

setRecAction(ft, {'If you are using these blocks '...

'as buffers, you should replace them with '...

1-216

ModelAdvisor.FormatTemplate.setRecAction

'Signal Conversion blocks'});

end

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-217

ModelAdvisor.FormatTemplate.setRefLink

Purpose Add See Also section and links

Syntax setRefLink(ft_obj, {{'standard'}})
setRefLink(ft_obj, {{'url', 'standard'}})

Description setRefLink(ft_obj, {{'standard'}}) is an optional method that
adds a See Also section above the table or list in the result. Use this
method to add references to standards. ft_obj is a handle to a template
object. standard is a cell array of strings that you want to display in
the result. If you include more than one cell, the Model Advisor displays
the strings in a bulleted list.

setRefLink(ft_obj, {{'url', 'standard'}}) generates a list
of links in the See Also section. url is a string that indicates the
location to link to. You must provide the full link including the
protocol. For example, http:\\www.mathworks.com is a valid link,
while www.mathworks.com is not a valid link. You can create a link to
a protocol that is valid URL, such as a web site address, a full path to
a file, or a relative path to a file.

Note setRefLink expects a cell array of cell arrays for the second
input.

Examples Create a list object, ft, and add a related standard:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setRefLink(ft, {{'IEC 61508-3, Table A.3 (3) ''Language subset'''}});

Create a list object, ft, and add a list of related standards:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setRefLink(ft, {

{'IEC 61508-3, Table A.3 (2) ''Strongly typed programming language'''},...

{'IEC 61508-3, Table A.3 (3) ''Language subset'''}});

See Also “Model Advisor Customization”

1-218

ModelAdvisor.FormatTemplate.setRefLink

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-219

ModelAdvisor.Text.setRetainSpaceReturn

Purpose Retain spacing and returns in text

Syntax setRetainSpaceReturn(text, mode)

Description setRetainSpaceReturn(text, mode) specifies whether the text must
retain the spaces and carriage returns.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating whether to
preserve spaces and carriage returns in the
text:

• true (default) — Preserve spaces and
carriage returns.

• false — Do not preserve spaces and
carriage returns.

Examples t1 = ModelAdvisor.Text('MathWorks home page');
setRetainSpaceReturn(t1, 'true');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-220

ModelAdvisor.Table.setRowHeading

Purpose Specify table row title

Syntax setRowHeading(table, row, heading)

Description setRowHeading(table, row, heading) specifies a title for the
designated table row.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number

heading A string, element object, or object array
specifying the table row title

Examples table1 = ModelAdvisor.Table(2,3);
setRowHeading(table1, 1, 'Row 1 Title');
setRowHeading(table1, 2, 'Row 2 Title');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-221

ModelAdvisor.Table.setRowHeadingAlign

Purpose Specify table row title alignment

Syntax setRowHeadingAlign(table, row, alignment)

Description setRowHeadingAlign(table, row, alignment) specifies the
alignment for the designated table row.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number.

alignment A string specifying the cell alignment.
Possible values are:

• left (default)

• right

• center

Examples table1 = ModelAdvisor.Table(2, 3);
setRowHeading(table1, 1, 'Row 1 Title');
setRowHeadingAlign(table1, 1, 'center');
setRowHeading(table1, 2, 'Row 2 Title');
setRowHeadingAlign(table1, 2, 'center');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-222

ModelAdvisor.Table.setRowHeadingValign

Purpose Specify table row title vertical alignment

Syntax setRowHeadingValign(table, row, alignment)

Description setRowHeadingValign(table, row, alignment) specifies the vertical
alignment for the designated table row.

Input
Arguments

table Instantiation of the ModelAdvisor.Table
class

row An integer specifying row number.

alignment A string specifying the cell vertical alignment.
Possible values are:

• top (default)

• middle

• bottom

Examples table1 = ModelAdvisor.Table(2, 3);
setRowHeading(table1, 1, 'Row 1 Title');
setRowHeadingValign(table1, 1, 'middle');
setRowHeading(table1, 2, 'Row 2 Title');
setRowHeadingValign(table1, 2, 'middle');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-223

ModelAdvisor.InputParameter.setRowSpan

Purpose Specify rows for input parameter

Syntax setRowSpan(input_param, [start_row end_row])

Description setRowSpan(input_param, [start_row end_row]) specifies the
number of rows that the parameter occupies. Specify where you want
an input parameter located in the layout grid when there are multiple
input parameters.

Input
Arguments

input_param The input parameter object

start_row A positive integer representing the first row
that the input parameter occupies in the
layout grid

end_row A positive integer representing the last row
that the input parameter occupies in the
layout grid

Examples inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);

1-224

ModelAdvisor.FormatTemplate.setSubBar

Purpose Add line between subcheck results

Syntax setSubBar(ft_obj, value)

Description setSubBar(ft_obj, value) is an optional method that adds lines
between results for subchecks. ft_obj is a handle to a template object.
value is a boolean value that specifies when the Model Advisor includes
a line between subchecks in the check results. By default, the value is
true, and the Model Advisor displays the bar. The Model Advisor does
not display the bar when you set the value to false.

Examples Create a list object, ft, turn off the subbar:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubBar(ft, false);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-225

ModelAdvisor.FormatTemplate.setSubResultStatus

Purpose Add status to check or subcheck result

Syntax setSubResultStatus(ft_obj, 'status')

Description setSubResultStatus(ft_obj, 'status') is an optional method that
displays the status in the result. Use this method to display the status
of the check or subcheck in the result. ft_obj is a handle to a template
object. status is a string identifying the status of the check. Valid
strings are:

Pass
Warn
Fail

Examples Create a list object, ft, and add a passing status:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubResutlStatus(ft, 'Pass');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-226

ModelAdvisor.FormatTemplate.setSubResultStatusText

Purpose Add text below status in result

Syntax setSubResultStatusText(ft_obj, message)

Description setSubResultStatusText(ft_obj, message) is an optional method
that displays text below the status in the result. Use this method to
describe the status.

Input
Arguments

ft_obj

A handle to a template object.

message

A string or a handle to a formatting object that the Model Advisor
displays below the status in the report.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

Examples Create a list object, ft, add a passing status and a description of why
the check passed:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubResutlStatus(ft, 'Pass');

setSubResultStatusText(ft, ['Constructs that are not supported when '...

'generating code were not found in the model or subsystem']);

See Also “Model Advisor Customization”

How To • “Model Advisor Customization”

• “Format Model Advisor Results”

1-227

ModelAdvisor.Text.setSubscript

Purpose Specify subscripted text

Syntax setSubscript(text, mode)

Description setSubscript(text, mode) indicates whether to make text subscript.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating subscripted
formatting of text:

• true— Make the text subscript.

• false— Do not make the text subscript.

Examples t1 = ModelAdvisor.Text('This is some text');
setSubscript(t1, 'true');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-228

ModelAdvisor.Text.setSuperscript

Purpose Specify superscripted text

Syntax setSuperscript(text, mode)

Description setSuperscript(text, mode) indicates whether to make text
superscript.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating superscripted
formatting of text:

• true— Make the text superscript.

• false— Do not make the text superscript.

Examples t1 = ModelAdvisor.Text('This is some text');
setSuperscript(t1, 'true');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-229

ModelAdvisor.FormatTemplate.setSubTitle

Purpose Add title for subcheck in result

Syntax setSubTitle(ft_obj, title)

Description setSubTitle(ft_obj, title) is an optional method that adds a
subcheck result title. Use this method when you create subchecks to
distinguish between them in the result.

Input
Arguments

ft_obj

A handle to a template object.

title

A string or a handle to a formatting object specifying the title of
the subcheck.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

Examples Create a list object, ft, and add a subcheck title:

ft = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft, ['Check for constructs in the model '...

'that are not supported when generating code']);

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-230

ModelAdvisor.FormatTemplate.setTableInfo

Purpose Add data to table

Syntax setTableInfo(ft_obj, {data})

Description setTableInfo(ft_obj, {data}) is an optional method that creates a
table. ft_obj is a handle to a table template object. data is a cell array
of strings or objects specifying the information in the body of the table.
The Model Advisor creates hyperlinks to objects. If you do not add data
to the table, the Model Advisor does not display the table in the result.

Note Before creating a table, you must specify column titles using
the setColTitle method.

Examples Create a table object, ft, add column titles, and add data to the table:

ft = ModelAdvisor.FormatTemplate('TableTemplate');

setColTitle(ft, {'Index', 'Block Name'});

setTableInfo(ft, {'1', 'Gain'});

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-231

ModelAdvisor.FormatTemplate.setTableTitle

Purpose Add title to table

Syntax setTableTitle(ft_obj, title)

Description setTableTitle(ft_obj, title) is an optional method that adds a
title to a table.

Input
Arguments

ft_obj

A handle to a template object.

title

A string or a handle to a formatting object specifying the title of
the table.

Valid formatting objects are: ModelAdvisor.Image,
ModelAdvisor.LineBreak, ModelAdvisor.List,
ModelAdvisor.Paragraph, ModelAdvisor.Table, and
ModelAdvisor.Text.

The title appears above the table. If you do not add data to the
table, the Model Advisor does not display the table and title in
the result.

Examples Create a table object, ft, and add a table title:

ft = ModelAdvisor.FormatTemplate('TableTemplate');

setTableTitle(ft, 'Table of fonts and styles used in model');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

• “Format Model Advisor Results”

1-232

ModelAdvisor.List.setType

Purpose Specify list type

Syntax setType(list_obj, listType)

Description setType(list_obj, listType) specifies the type of list the
ModelAdvisor.List constructor creates.

Input
Arguments

list_obj Instantiation of the ModelAdvisor.List class

listType Specifies the list type:

• numbered

• bulleted

Examples subList = ModelAdvisor.List();

subList.setType('numbered')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-233

ModelAdvisor.Text.setUnderlined

Purpose Underline text

Syntax setUnderlined(text, mode)

Description setUnderlined(text, mode) indicates whether to underline text.

Input
Arguments

text Instantiation of the ModelAdvisor.Text class

mode A Boolean value indicating underlined
formatting of text:

• true — Underline the text.

• false— Do not underline the text.

Examples t1 = ModelAdvisor.Text('This is some text');
setUnderlined(t1, 'true');

See Also “Model Advisor Customization”

How To • “Authoring Checks”

1-234

sigrangeinfo

Purpose Retrieve signal range coverage information from cvdata object

Syntax [min, max] = sigrangeinfo(cvdo, object)
[min, max] = sigrangeinfo(cvdo, object, portID)

Description [min, max] = sigrangeinfo(cvdo, object) returns the minimum
and maximum signal values output by the model component object
within the cvdata object cvdo.

[min, max] = sigrangeinfo(cvdo, object, portID) returns the
minimum and maximum signal values associated with the output port
portID of the Simulink block object.

Input
Arguments

cvdo

cvdata object

object

An object in the model or Stateflow chart that receives signal range
coverage. Valid values for object include the following:

Object Specification Description

BlockPath Full path to a model or block

BlockHandle Handle to a model or block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

1-235

sigrangeinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or atomic subchart and a
Stateflow object API handle contained
in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

portID

Output port of the block object

Output
Arguments

max

Maximum signal value output by the model component object within
the cvdata object, cvdo. If object outputs a vector, min and max are
also vectors.

min

Minimum signal value output by the model component object within
the cvdata object, cvdo. If object outputs a vector, min and max are
also vectors.

Alternatives Use the Coverage Settings dialog box to collect signal range coverage
for a model:

1 Open the model for which you want to collect signal range coverage.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select Signal Range.

1-236

sigrangeinfo

5 On the Results and Reporting tabs, specify the output you need.

6 Click OK to close the Coverage Settings dialog box and save your
changes.

7 Simulate the model and review the results.

Examples Collect signal range data for the Product block in the
slvnvdemo_cv_small_controller model:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
%Create test spec object
testObj = cvtest(mdl)
%Enable signal range coverage
testObj.settings.sigrange = 1;
%Simulate the model
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Product'], 'Handle');
%Get signal range data
[minVal, maxVal] = sigrangeinfo(data, blk_handle)

See Also complexityinfo | conditioninfo | cvsim | decisioninfo |
getCoverageInfo | mcdcinfo | overflowsaturationinfo |
sigsizeinfo | tableinfo

1-237

sigsizeinfo

Purpose Retrieve signal size coverage information from cvdata object

Syntax [min, max, allocated] = sigsizeinfo(data, object)
[min, max, allocated] = sigsizeinfo(data, object, portID)

Description [min, max, allocated] = sigsizeinfo(data, object) returns the
minimum, maximum, and allocated signal sizes for the outputs of model
component object within the coverage data object data, if object
supports variable size signals.

[min, max, allocated] = sigsizeinfo(data, object, portID)
returns the minimum and maximum signal sizes associated with the
output port portID of the model component object.

Input
Arguments

data

cvdata object

object

An object in the model or Stateflow chart that receives signal size
coverage. Valid values for object include the following:

Object Specification Description

BlockPath Full path to a Simulink model or block

BlockHandle Handle to a Simulink model or block

slObj Handle to a Simulink API object

sfID Stateflow ID

sfObj Handle to a Stateflow API object

{BlockPath, sfID} Cell array with the path to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

1-238

sigsizeinfo

Object Specification Description

{BlockPath, sfObj} Cell array with the path to a Stateflow
chart or atomic subchart and a
Stateflow object API handle contained
in that chart or subchart

[BlockHandle, sfID] Array with a handle to a Stateflow
chart or atomic subchart and the ID
of an object contained in that chart or
subchart

portID

Output port number of the model component object

Output
Arguments

max

Maximum signal size output by the model component object within
the cvdata object data. If object has multiple outputs, max is a vector.

min

Minimum signal size output by the model component object within the
cvdata object data. If object has multiple outputs, min is a vector.

allocated

Allocated signal size output by the model component object within
the cvdata object data. If object has multiple outputs, allocated
is a vector.

Examples Collect signal size coverage data for the Switch block in the
sldemo_varsize_basic model:

mdl = 'sldemo_varsize_basic';
open_system(mdl);
%Create test spec object
testObj = cvtest(mdl);

1-239

sigsizeinfo

%Enable signal size coverage
testObj.settings.sigsize=1;
%Simulate the model
data = cvsim(testObj);
%Set the block handle
blk_handle = get_param([mdl, '/Switch'], 'Handle');
%Get signal size data
[minVal, maxVal, allocVal] = sigsizeinfo(data, blk_handle);

Alternatives Use the Coverage Settings dialog box to collect signal size coverage
for a model:

1 Open the model for which you want to collect signal size coverage.

2 In the Simulink Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select Signal Size.

5 On the Results and Reporting tabs, specify the output you need.

6 Click OK to close the Coverage Settings dialog box and save your
changes.

7 Simulate the model and review the results.

See Also complexityinfo | conditioninfo | cvsim | decisioninfo | mcdcinfo
| sigrangeinfo | tableinfo

1-240

slvnvextract

Purpose Extract subsystem or subchart contents into new model

Syntax newModel = slvnvextract(subsystem)
newModel = slvnvextract(subchart)
newModel = slvnvextract(subsystem, showModel)
newModel = slvnvextract(subchart, showModel)

Description newModel = slvnvextract(subsystem) extracts the contents of
the Atomic Subsystem block subsystem and creates a new model.
slvnvextract returns the name of the new model in newModel.
slvnvextract uses the subsystem name for the model name, appending
a numeral to the model name if that model name already exists.

newModel = slvnvextract(subchart) extracts the contents of the
atomic subchart subchart and creates a new model. subchart should
specify the full path of the atomic subchart. slvnvextract uses the
subchart name for the model name, appending a numeral to the model
name if that model name already exists.

Note If the atomic subchart calls an exported graphical function that
is outside the subchart, slvnvextract creates the model, but the new
model will not compile.

newModel = slvnvextract(subsystem, showModel) and newModel
= slvnvextract(subchart, showModel) open the extracted model
if you set showModel to true. The extracted model is only loaded if
showModel is set to false.

Input
Arguments

subsystem

Full path to the atomic subsystem

subchart

Full path to the atomic subchart

1-241

slvnvextract

showModel

Boolean indicating whether to display the extracted model

Default: True

Output
Arguments

newModel

Name of the new model

Examples Extract the Atomic Subsystem block, Bus Counter, from the
sldemo_mdlref_conversion model and copy it into a new model:

open_system('sldemo_mdlref_conversion');

newmodel = slvnvextract('sldemo_mdlref_conversion/Bus Counter', true);

Extract the Atomic Subchart block, Sensor1, from the
sf_atomic_sensor_pair model and copy it into a new model:

open_system('sf_atomic_sensor_pair');

newmodel = ...

slvnvextract('sf_atomic_sensor_pair/RedundantSensors/Sensor1', true);

1-242

slvnvharnessopts

Purpose Generate default options for slvnvmakeharness

Syntax harnessopts = slvnvharnessopts

Description harnessopts = slvnvharnessopts generates the default configuration
for running slvnvmakeharness.

Output
Arguments

harnessopts

A structure whose fields specify the default configuration for
slvnvmakeharness. The harnessopts structure can have the following
fields. Default values are used if not specified.

Field Description

harnessFilePath Specifies the file path for creating the
harness model. If an invalid path is
specified, slvnvmakeharness does not save
the harness model, but it creates and opens
the harness model. If this option is not
specified, slvnvmakeharness generates
a new harness model and saves it in the
MATLAB current folder.

Default: ''

modelRefHarness Generates the test harness model that
includes model in a Model block. When
false, the test harness model includes a
copy of model.

Default: true

1-243

slvnvharnessopts

Field Description

usedSignalsOnly When true, the Signal Builder block in the
harness model has signals only for input
signals used in the model. The Simulink
Design Verifier software must be available,
and model must be compatible with the
Simulink Design Verifier software to detect
the used input signals.

Default: false

systemTestHarness When true, generates a SystemTest™
harness. This option requires dataFile
path in addition to model.

Default: false

Examples Create a test harness for the sldemo_mdlref_house model using the
default options:

open_system('sldemo_mdlref_house');
harnessOpts = slvnvharnessopts;
[harnessfile] = slvnvmakeharness('sldemo_mdlref_house',...

'', harnessOpts);

See Also slvnvmakeharness

1-244

slvnvlogsignals

Purpose Log test data for component or model during simulation

Syntax data = slvnvlogsignals(model_block)
data = slvnvlogsignals(harness_model)
data = slvnvlogsignals(harness_model, test_case_index)

Description data = slvnvlogsignals(model_block) simulates the model
that contains model_block and logs the input signals to the
model_block block. model_block must be a Simulink Model block.
slvnvlogsignals records the logged data in the structure data.

data = slvnvlogsignals(harness_model) simulates every test
case in harness_model and logs the input signals to the Test Unit
block in the harness model. You must generate harness_model
using the Simulink Design Verifier analysis, sldvmakeharness, or
slvnvmakeharness.

data = slvnvlogsignals(harness_model, test_case_index)
simulates every test case in the Signal Builder block of the
harness_model specified by test_case_index. slvnvlogsignals
logs the input signals to the Test Unit block in the harness model. If
you omit test_case_index, slvnvlogsignals simulates every test
case in the Signal Builder.

Input
Arguments

model_block

Full block path name or handle to a Simulink Model block

harness_model

Name or handle to a harness model that the Simulink Design Verifier
software, sldvmakeharness, or slvnvmakeharness creates

test_case_index

Array of integers that specifies which test cases in the Signal Builder
block of the harness model to simulate

1-245

slvnvlogsignals

Output
Arguments

data

Structure that contains the logged data

Examples Log simulation data for a Model block. Use the logged data to create a
harness model and visualize the data in the referenced model.

1 Simulate the CounterB Model block, which references
the sldemo_mdlref_counter model, in the context of the
sldemo_mdlref_basic model and log the data:

open_system('sldemo_mdlref_basic');
data = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

2 Create a harness model for sldemo_mdlref_counter using the logged
data and the default harness options:

load_system('sldemo_mdlref_counter');
harnessOpts = slvnvharnessopts
[harnessFilePath] = ...

slvnvmakeharness('sldemo_mdlref_counter', data, ...
harnessOpts);

See Also sldvmakeharness | slvnvruncgvtest | slvnvruntest |
slvnvmakeharness

1-246

slvnvmakeharness

Purpose Generate Simulink Verification and Validation harness model

Syntax [harnessFilePath] = slvnvmakeharness(model)
[harnessFilePath] = slvnvmakeharness(model, dataFile)
[harnessFilePath] = slvnvmakeharness(model,
dataFile, harnessOpts)

Description [harnessFilePath] = slvnvmakeharness(model) generates a test
harness from model, which is a handle to a Simulink model or a
string with the model name. slvnvmakeharness returns the path
and file name of the generated harness model in harnessFilePath.
slvnvmakeharness creates an empty harness model; the test harness
includes one default test case that specifies the default values for all
input signals.

[harnessFilePath] = slvnvmakeharness(model, dataFile)
generates a test harness from the data file dataFile.

[harnessFilePath] = slvnvmakeharness(model, dataFile,
harnessOpts) generates a test harness from model using the
dataFile and harnessOpts, which specifies the harness creation
options. Requires '' for dataFile if dataFile is not available.

Input
Arguments

model

Handle to a Simulink model or a string with the model name

dataFile

Name of the file containing the data.

Default: ''

harnessOpts

A structure whose fields specify the configuration for slvnvmakeharness:

1-247

slvnvmakeharness

Field Description

harnessFilePath Specifies the file path for creating the
harness model. If an invalid path is
specified, slvnvmakeharness does not
save the harness model, but it creates and
opens the harness model. If this option
is not specified, the slvnvoptions object
is used. If this option is not specified,
slvnvmakeharness generates a new harness
model and saves it in the MATLAB current
folder.

Default: ''

modelRefHarness Generates the test harness model that
includes model in a Model block. When
false, the test harness model includes a
copy of model.

Default: true

Note If your model contains bus
objects and you set modelRefHarness
to true, in the Configuration
Parameters > Diagnostics > Connectivity
pane, you must set theMux blocks used to
create bus signals parameter to error.
For more information, see “Prevent Bus and
Mux Mixtures”.

1-248

slvnvmakeharness

Field Description

usedSignalsOnly When true, the Signal Builder block in the
harness model has signals only for input
signals used in the model. The Simulink
Design Verifier software must be available,
and model must be compatible with the
Simulink Design Verifier software to detect
the used input signals.

Default: false

systemTestHarness When true, generates a SystemTest harness.
This option requires dataFile path in
addition to model.

Default: false

Note To create a default harnessOpts object, at the MATLAB
command prompt, type:

slvnvharnessopts

Output
Arguments

harnessFilePath

String containing the path and file name of the generated harness model

Examples Create a test harness for the sldemo_mdlref_house model using the
default options:

open_system('sldemo_mdlref_house');

[harnessfile] = slvnvmakeharness('sldemo_mdlref_house', '', harnessOpts);

See Also slvnvharnessopts | slvnvmergeharness

1-249

slvnvmergedata

Purpose Combine test data from data files

Syntax merged_data = slvnvmergedata(data1,data2,...)

Description merged_data = slvnvmergedata(data1,data2,...) combines two or
more test cases and counterexamples data into a single test case data
structure merged_data.

Input
Arguments

data

Structure that contains test case or counterexample data. Generate
this structure by running slvnvlogsignals, or by running a Simulink
Design Verifier analysis.

Output
Arguments

merged_data

Structure that contains the merged test cases or counterexamples

Examples Open the sldemo_mdlref_basic model, which contains three
Model blocks that reference the model sldemo_mdlref_counter.
Log the input signals to the three Model blocks and merge the
logged data using slvnvmergedata. Simulate the referenced model,
sldemo_mdlref_counter, for coverage with the merged data and
display the coverage results in an HTML file.

sldemo_mdlref_basic;

data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');

merged_data = slvnvmergedata(data1, data2, data3);

open_system('sldemo_mdlref_counter');

runOpts = slvnvruntestopts;

runOpts.coverageEnabled = true;

[outData, initialCov] = slvnvruntest('sldemo_mdlref_counter', ...

merged_data, runOpts);

cvhtml('Initial coverage', initialCov);

1-250

slvnvmergedata

See Also sldvrun | slvnvlogsignals | slvnvmakeharness | slvnvruncgvtest
| slvnvruntest

1-251

slvnvmergeharness

Purpose Combine test data from harness models

Syntax status = slvnvmergeharness(name, models,
initialization_commands)

Description status = slvnvmergeharness(name, models,
initialization_commands) collects the test data and
initialization commands from each test harness model in models.
slvnvharnessmerge saves the data and initialization commands in
name, which is a handle to the new model.

initialization_commands is a cell array of strings the same length
as models. It defines parameter settings for the test cases of each test
harness model.

If name does not exist, slvnvmergeharness creates it as a copy of
the first model in models. slvnvmergeharness then merges data
from other models listed in models into this model. If you create
name from a previous slvnvmergeharness run, subsequent runs of
slvnvmergeharness for name maintain the structure and initialization
from the earlier run. If name matches an existing Simulink model,
slvnvmergeharness merges the test data from models into name.

slvnvmergeharness assumes that name and the rest of the models in
models have only one Signal Builder block on the top level. If a model
in models does not meet this restriction or its top-level Signal Builder
block does not have the same number of signals as the top-level Signal
Builder block in name, slvnvmergeharness does not merge that model’s
test data into name.

Input
Arguments

name

Name of the new harness model, to be stored in the default MATLAB
folder

models

A cell array of strings that represent harness model names

1-252

slvnvmergeharness

initialization_commands

A cell array of strings the same length as models.
initialization_commands defines parameter settings for
the test cases of each test harness model.

Output
Arguments

status

If the function saves the data and initialization commands in name,
slvnvmergeharness returns a status of 1. Otherwise, it returns 0.

Examples Log the input signals to the three Model blocks in the
sldemo_mdlref_basic example model that each reference the same
model. Make three test harnesses using the logged signals and merge
the three test harnesses:

open_system('sldemo_mdlref_basic');

data1 = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

data2 = slvnvlogsignals('sldemo_mdlref_basic/CounterB');

data3 = slvnvlogsignals('sldemo_mdlref_basic/CounterC');

open_system('sldemo_mdlref_counter');

harness1FilePath = slvnvmakeharness('sldemo_mdlref_counter', data1);

harness2FilePath = slvnvmakeharness('sldemo_mdlref_counter', data2);

harness3FilePath = slvnvmakeharness('sldemo_mdlref_counter', data3)

[~, harness1] = fileparts(harness1FilePath);

[~, harness2] = fileparts(harness2FilePath);

[~, harness3] = fileparts(harness3FilePath);

slvnvmergeharness('new_harness_model',{harness1, harness2, harness3});

See Also slvnvlogsignals | slvnvmakeharness

1-253

slvnvruncgvtest

Purpose Invoke Code Generation Verification (CGV) API and execute model

Syntax cgvObject = slvnvruncgvtest(model, dataFile)
cgvObject = slvnvruncgvtest(model, dataFile, runOpts)

Description cgvObject = slvnvruncgvtest(model, dataFile) invokes the Code
Generation Verification (CGV) API methods and executes the model
using all test cases in dataFile. cgvObject is a cgv.CGV object
that slvnvruncgvtest creates during the execution of the model.
slvnvruncgvtest sets the execution mode for cgvObject to'sim' by
default.

cgvObject = slvnvruncgvtest(model, dataFile, runOpts)
invokes CGV API methods and executes the model using test cases in
dataFile. runOpts defines the options for executing the test cases.
The settings in runOpts determine the configuration of cgvObject.

Tips To run slvnvruncgvtest, you must have a Embedded Coder® license.

If your model has parameters that are not configured for executing test
cases with the CGV API, slvnvruncgvtest reports warnings about the
invalid parameters. If you see these warnings, do one of the following:

• Modify the invalid parameters and rerun slvnvruncgvtest.

• Set allowCopyModel in runOpts to be true and rerun
slvnvruncgvtest. slvnvruncgvtest makes a copy of your model
configured for executing test cases, and invokes the CGV API.

Input
Arguments

model

Name of the Simulink model to execute

dataFile

Name of the data file or a structure that contains the input data. Data
can be generated either by:

• Analyzing the model using the Simulink Design Verifier software.

1-254

slvnvruncgvtest

• Using the slvnvlogsignals function.

runOpts

A structure whose fields specify the configuration of slvnvruncgvtest.

Field Name Description

testIdx Test case index array to simulate from
dataFile.

If testIdx = [] (the default), slvnvruncgvtest
simulates all test cases.

allowCopyModel Specifies to create and configure the model if you
have not configured it for executing test cases
with the CGV API.

If true and you have not configured your
model to execute test cases with the CGV API,
slvnvruncgvtest copies the model, fixes the
configuration, and executes the test cases on the
copied model.

If false (the default), an error occurs if the tests
cannot execute with the CGV API.

Note If you have not configured the top-level
model or any referenced models to execute test
cases, slvnvruncgvtest does not copy the model,
even if allowCopyModel is true. An error occurs.

1-255

slvnvruncgvtest

Field Name Description

cgvCompType Defines the software-in-the-loop (SIL) or
processor-in-the-loop (PIL) approach for CGV:

• 'topmodel' (default)

• 'modelblock'

cgvConn Specifies mode of execution for CGV:

• 'sim' (default)

• 'sil'

• 'pil'

Note runOpts = slvnvruntestopts('cgv') returns a runOpts
structure with the default values for each field.

Output
Arguments

cgvObject

cgv.CGV object that slvnvruncgvtest creates during the execution of
model.

slvnvruncgvtest saves the following data for each test case executed
in an array of Simulink.SimulationOutput objects inside cgvObject.

Field Description

tout_slvnvruncgvtest Simulation time

xout_slvnvruncgvtest State data

1-256

slvnvruncgvtest

Field Description

yout_slvnvruncgvtest Output signal data

logsout_slvnvruncgvtest Signal logging data for:

• Signals connected to outports

• Signals that are configured for
logging on the model

Examples Open the sldemo_mdlref_basic example model and log the input
signals to the CounterA Model block.

open_system('sldemo_mdlref_basic');

load_system('sldemo_mdlref_counter');

loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

Create the default configuration object for slvnvruncgvtest, and allow
the model to be configured to execute test cases with the CGV API.

runOpts = slvnvruntestopts('cgv');

runOpts.allowCopyModel = true;

Using the logged signals, execute slvnvruncgvtest—first in simulation
mode, and then in Software-in-the-Loop (SIL) mode—to invoke the CGV
API and execute the specified test cases on the generated code for the
model.

cgvObjectSim = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

runOpts.cgvConn = 'sil';

cgvObjectSil = slvnvruncgvtest('sldemo_mdlref_counter', loggedData, runOpts);

Use the CGV API to compare the results of the first test case.

simout = cgvObjectSim.getOutputData(1);

silout = cgvObjectSil.getOutputData(1);

[matchNames, ~, mismatchNames, ~] = cgv.CGV.compare(simout, silout);

1-257

slvnvruncgvtest

fprintf('\nTest Case: %d Signals match, %d Signals mismatch', ...

length(matchNames), length(mismatchNames));

See Also cgv.CGV | slvnvlogsignals | slvnvruntest | slvnvruntestopts

1-258

slvnvruntest

Purpose Simulate model using input data

Syntax outData = slvnvruntest(model, dataFile)
outData = slvnvruntest(model, dataFile, runOpts)
[outData, covData] = slvnvruntest(model, dataFile, runOpts)

Description outData = slvnvruntest(model, dataFile) simulates model
using all the test cases in dataFile. outData is an array of
Simulink.SimulationOutput objects. Each array element contains the
simulation output data of the corresponding test case.

outData = slvnvruntest(model, dataFile, runOpts) simulates
model using all the test cases in dataFile. runOpts defines the
options for simulating the test cases.

[outData, covData] = slvnvruntest(model, dataFile, runOpts)
simulates model using the test cases in dataFile. When the
runOpts field coverageEnabled is true, the Simulink Verification and
Validation™ software collects model coverage information during the
simulation. slvnvruntest returns the coverage data in the cvdata
object covData.

Tips The dataFile that you create with a Simulink Design Verifier analysis
or by running slvnvlogsignals contains time values and data values.
When you simulate a model using these test cases, you might see
missing coverage. This issue occurs when the time values in the
dataFile are not aligned with the current simulation time step due to
numeric calculation differences. You see this issue more frequently with
multirate models—models that have multiple sample times.

Input
Arguments

model

Name or handle of the Simulink model to simulate

dataFile

1-259

slvnvruntest

Name of the data file or structure that contains the input data. You can
generate dataFile using the Simulink Design Verifier software, or by
running the slvnvlogsignals function.

runOpts

A structure whose fields specify the configuration of slvnvruntest.

Field Description

testIdx Test case index array to simulate
from dataFile. If testIdx is [],
slvnvruntest simulates all test
cases.

Default: []

signalLoggingSaveFormat Specifies signal logging data format
for:

• Signals connected to the outports
of the model

• Intermediate signals that are
already configured for logging

Valid values are:

• 'Dataset' (default) —
slvnvruntest stores the data in
Simulink.SimulationData.
Dataset objects.

• 'ModelDataLogs' —
slvnvruntest stores the data
in Simulink.ModelDataLogs
objects.

1-260

slvnvruntest

Field Description

coverageEnabled If true, specifies that the Simulink
Verification and Validation software
collect model coverage data during
simulation.

Default: false

coverageSetting cvtest object for collecting model
coverage. If [], slvnvruntest uses
the existing coverage settings for
model.

Default: []

Output
Arguments

outData

An array of Simulink.SimulationOutput objects that simulating the
test cases generates. Each Simulink.SimulationOutput object has
the following fields.

Field Name Description

tout_slvnvruntest Simulation time

xout_slvnvruntest State data

yout_slvnvruntest Output signal data

logsout_slvnvruntest Signal logging data for:

• Signals connected to outports

• Signals that are configured for
logging on the model

covData

cvdata object that contains the model coverage data collected during
simulation.

1-261

slvnvruntest

Examples Analyze the sldemo_mdlref_basic model and log the input signals to
the CounterA Model block:

open_system('sldemo_mdlref_basic');
loggedData = slvnvlogsignals('sldemo_mdlref_basic/CounterA');

Using the logged signals, simulate the model referenced in the Counter
block (sldemo_mdlref_counter):

runOpts = slvnvruntestopts;
runOpts.coverageEnabled = true;
open_system('sldemo_mdlref_counter');
[outData] = slvnvruntest('sldemo_mdlref_counter',...

loggedData, runOpts);

Examine the output data from the first test case using the Simulation
Data Inspector:

Simulink.sdi.createRun('Test Case 1 Output', 'namevalue',...
{'output'}, {outData(1).find('logsout_slvnvruntest')});

Simulink.sdi.view;

See Also cvsim | cvtest | sim | slvnvruntestopts

1-262

slvnvruntestopts

Purpose Generate simulation or execution options for slvnvruntest or
slvnvruncgvtest

Syntax runOpts = slvnvruntestopts
runOpts = slvnvruntestopts('cgv')

Description runOpts = slvnvruntestopts generates a runOpts structure for
slvnvruntest.

runOpts = slvnvruntestopts('cgv') generates a runOpts structure
for slvnvruncgvtest.

Output
Arguments

runOpts

A structure whose fields specify the configuration of slvnvruntest or
slvnvruncgvtest. runOpts can have the following fields. If you do not
specify a field, slvnvruncgvtest or slvnvruntest uses the default
value.

Field Name Description

testIdx Test case index array to simulate or execute
from data file.

If testIdx = [], all test cases are simulated
or executed.

Default: []

SignalLogging
SaveFormat

Available only for slvnvruntest.

Specifies format for signal logging data for
signals connected to the outports of the model
and for intermediate signals configured for
logging.

• 'Dataset' — Data will be stored in
Simulink.SimulationData.Dataset
objects.

1-263

slvnvruntestopts

Field Name Description

• 'ModelDataLogs'— Data will be stored in
Simulink.ModelDataLogs objects.

Default: 'Dataset'

coverageEnabled Available only for slvnvruntest.

If true, slvnvruntest collects model coverage
data during simulation.

Default: false

coverageSetting Available only for slvnvruntest.

cvtest object to use for collecting model
coverage.

If coverageSetting is [], slvnvruntest uses
the coverage settings for the model specified
in the call to slvnvruntest.

Default: []

allowCopyModel Available only for slvnvruncgvtest.

Specifies to create and configure the model
if you have not configured it to execute test
cases with the CGV API.

If true and you have not configured the model
to execute test cases with the CGV API,
slvnvruncgvtest copies the model, fixes the
configuration, and executes the test cases on
the copied model.

If false, an error occurs if the tests cannot
execute with the CGV API.

1-264

slvnvruntestopts

Field Name Description

Note If you have not configured the top-level
model or any referenced models to execute
test cases, slvnvruncgvtest does not copy
the model, even if allowCopyModel is true.
An error occurs.

Default:false

cgvCompType Available only for slvnvruncgvtest.

Defines the software-in-the-loop (SIL) or
processor-in-the-loop (PIL) approach for CGV:

• 'topmodel'

• 'modelblock'

Default:'topmodel'

cgvConn Available only for slvnvruncgvtest.

Specifies mode of execution for CGV:

• 'sim'

• 'sil'

• 'pil'

Default:'sim'

Examples Create runOpts objects for slvnvruntest and slvnvruncgvtest:

%Create options for slvnvruntest
runtest_opts = slvnvruntestopts;

1-265

slvnvruntestopts

%Create options for slvnvruncgvtest
runcgvtest_opts = slvnvruntestopts('cgv')

Alternatives Create a runOpts object at the MATLAB command line.

See Also slvnvruncgvtest | slvnvruntest

1-266

tableinfo

Purpose Retrieve lookup table coverage information from cvdata object

Syntax coverage = tableinfo(cvdo, object)
coverage = tableinfo(cvdo, object, ignore_descendants)
[coverage, exeCounts] = tableinfo(cvdo, object)
[coverage, exeCounts, brkEquality] =
tableinfo(cvdo, object)

Description coverage = tableinfo(cvdo, object) returns lookup table coverage
results from the cvdata object cvdo for the model component object.

coverage = tableinfo(cvdo, object, ignore_descendants)
returns lookup table coverage results for object, depending on the
value of ignore_descendants.

[coverage, exeCounts] = tableinfo(cvdo, object) returns
lookup table coverage results and the execution count for each
interpolation/extrapolation interval in the lookup table block object.

[coverage, exeCounts, brkEquality] = tableinfo(cvdo,
object) returns lookup table coverage results, the execution count for
each interpolation/extrapolation interval, and the execution counts for
breakpoint equality.

Input
Arguments

cvdo

cvdata object

ignore_descendants

Logical value specifying whether to ignore the coverage of descendant
objects

1 — Ignore coverage of descendant objects
0 — Collect coverage for descendant objects

object

Full path or handle to a lookup table block or a model containing a
lookup table block.

1-267

tableinfo

Output
Arguments

brkEquality

A cell array containing vectors that identify the number of times
during simulation that the lookup table block input was equivalent to
a breakpoint value. Each vector represents the breakpoints along a
different lookup table dimension.

coverage

The value of coverage is a two-element vector of form
[covered_intervals total_intervals], the elements of which are:

covered_intervals Number of
interpolation/extrapolation
intervals satisfied for object

total_intervals Total number of
interpolation/extrapolation
intervals for object

coverage is empty if cvdo does not contain lookup table coverage
results for object.

exeCounts

An array having the same dimensionality as the lookup table block;
its size has been extended to allow for the lookup table extrapolation
intervals.

Examples Collect lookup table coverage for the slvnvdemo_cv_small_controller
model and determine the percentage of interpolation/extrapolation
intervals coverage collected for the Gain Table block in the Gain
subsystem:

mdl = 'slvnvdemo_cv_small_controller';
open_system(mdl)
%Create test spec object
testObj = cvtest(mdl)
%Enable lookup table coverage

1-268

tableinfo

testObj.settings.tableExec = 1;
%Simulate the model
data = cvsim(testObj)
blk_handle = get_param([mdl, '/Gain/Gain Table'], 'Handle');
%Retrieve l/u table coverage
cov = tableinfo(data, blk_handle)
%Percent MC/DC outcomes covered
percent_cov = 100 * cov(1) / cov(2)

Alternatives Use the Coverage Settings dialog box to collect lookup table coverage
for a model:

1 Open the model.

2 In the Model Editor, select Analysis > Coverage > Settings.

3 On the Coverage tab, select Coverage for this model.

4 Under Coverage metrics, select Lookup Table.

5 On the Results and Reporting tabs, specify the output you need.

6 Click OK to close the Coverage Settings dialog box and save your
changes.

7 Simulate the model and review the results.

See Also complexityinfo | conditioninfo | cvsim | decisioninfo |
getCoverageInfo | mcdcinfo | overflowsaturationinfo |
sigrangeinfo | sigsizeinfo

How To • “Lookup Table Coverage”

1-269

ModelAdvisor.ListViewParameter.Attributes property

Purpose Attributes to display in Model Advisor Report Explorer

Values Cell array

Default: {} (empty cell array)

Description The Attributes property specifies the attributes to display in the
center pane of the Model Advisor Results Explorer.

Examples % define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

1-270

ModelAdvisor.Check.CallbackContext property

Purpose Specify when to run check

Values 'PostCompile'
'None' (default)

Description The CallbackContext property specifies the context for checking the
model or subsystem.

'None' No special requirements for the model before
checking.

'Postcompile' The model must be compiled.

1-271

ModelAdvisor.Check.CallbackHandle property

Purpose Callback function handle for check

Values Function handle.

An empty handle [] is the default.

Description The CallbackHandle property specifies the handle to the check callback
function.

1-272

ModelAdvisor.Check.CallbackStyle property

Purpose Callback function type

Values 'StyleOne' (default)
'StyleTwo'
'StyleThree'

Description The CallbackStyle property specifies the type of the callback function.

'StyleOne' Simple check callback function

'StyleTwo' Detailed check callback function

'StyleThree' Check callback function with hyperlinked
results

1-273

ModelAdvisor.Check.EmitInputParametersToReport
property

Purpose Display check input parameters in the Model Advisor report

Values 'true' (default)
'false'

Description The EmitInputParametersToReport property specifies the display of
check input parameters in the Model Advisor report.

'true' Display check input parameters in the Model
Advisor report

'false' Do not display check input parameters in the
Model Advisor report

1-274

ModelAdvisor.ListViewParameter.Data property

Purpose Objects in Model Advisor Result Explorer

Values Array of Simulink objects

Default: [] (empty array)

Description The Data property specifies the objects displayed in the Model Advisor
Result Explorer.

Examples % define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

1-275

ModelAdvisor.Action.Description property

Purpose Message in Action box

Values String

Default:'' (null string)

Description The Description property specifies the message displayed in the
Action box.

Examples % define action (fix) operation
myAction = ModelAdvisor.Action;
%Specify a callback function for the action
myAction.setCallbackFcn(@sampleActionCB);
myAction.Name='Fix block fonts';
myAction.Description=...

'Click the button to update all blocks with specified font';

1-276

ModelAdvisor.FactoryGroup.Description property

Purpose Description of folder

Values String

Default: '' (null string)

Description The Description property provides information about the folder.
Details about the folder are displayed in the right pane of the Model
Advisor.

Examples % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.Description='Sample Factory Group';

1-277

ModelAdvisor.Group.Description property

Purpose Description of folder

Values String

Default: '' (null string)

Description The Description property provides information about the folder.
Details about the folder are displayed in the right pane of the Model
Advisor.

Examples MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');
MAG.Description='This is my group';

1-278

ModelAdvisor.InputParameter.Description property

Purpose Description of input parameter

Values String.

Default: '' (null string)

Description The Description property specifies a description of the input
parameter. Details about the check are displayed in the right pane of
the Model Advisor.

Examples % define input parameters
inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';

1-279

ModelAdvisor.Task.Description property

Purpose Description of task

Values String

Default: '' (null string)

Description The Description property is a description of the task that the Model
Advisor displays in the Analysis box.

When adding checks as tasks, the Model Advisor uses the task
Description property instead of the check TitleTips property.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task 1';

MAT1.Description='This is the first example task.'

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT2.Description='This is the second example task.'

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

MAT3.Description='This is the third example task.'

1-280

ModelAdvisor.FactoryGroup.DisplayName property

Purpose Name of folder

Values String

Default:'' (null string)

Description The DisplayName specifies the name of the folder that is displayed in
the Model Advisor.

Examples % --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='Sample Factory Group';

1-281

ModelAdvisor.Group.DisplayName property

Purpose Name of folder

Values String

Default:'' (null string)

Description The DisplayName specifies the name of the folder that is displayed in
the Model Advisor.

Examples MAG = ModelAdvisor.Group('com.mathworks.sample.GroupSample');

MAG.DisplayName='My Group';

1-282

ModelAdvisor.Task.DisplayName property

Purpose Name of task

Values String

Default: '' (null string)

Description The DisplayName property specifies the name of the task. The Model
Advisor displays each custom task in the tree using the name of the
task. Therefore, you should specify a unique name for each task. When
you specify the same name for multiple tasks, the Model Advisor
generates a warning.

When adding checks as tasks, the Model Advisor uses the task
DisplayName property instead of the check Title property.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');

MAT1.DisplayName='Example task with input parameter and auto-fix ability';

MAT2 = ModelAdvisor.Task('com.mathworks.sample.TaskSample2');

MAT2.DisplayName='Example task 2';

MAT3 = ModelAdvisor.Task('com.mathworks.sample.TaskSample3');

MAT3.DisplayName='Example task 3';

1-283

ModelAdvisor.Check.Enable property

Purpose Indicate whether user can enable or disable check

Values true (default)
false

Description The Enable property specifies whether the user can enable or disable
the check.

true Display the check box control

false Hide the check box control

1-284

ModelAdvisor.Task.Enable property

Purpose Indicate if user can enable and disable task

Values true (default)
false

Description The Enable property specifies whether the user can enable or disable
a task.

true (default) Display the check box control for task

false Hide the check box control for task

When adding checks as tasks, the Model Advisor uses the task Enable
property instead of the check Enable property.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.Enable ='false';

1-285

ModelAdvisor.InputParameter.Entries property

Purpose Drop-down list entries

Values Depends on the value of the Type property.

Description The Entries property is valid only when the Type property is one of
the following:

• Enum

• ComboBox

• PushButton

Examples inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};

1-286

ModelAdvisor.Check.ID property

Purpose Identifier for check

Values String

Default: '' (null string)

Description The ID property specifies a permanent, unique identifier for the check.
Note the following about the ID property:

• You must specify this property.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Tasks and factory group definitions must refer to checks by ID.

1-287

ModelAdvisor.FactoryGroup.ID property

Purpose Identifier for folder

Values String

Description The ID property specifies a permanent, unique identifier for the folder.

Note

• You must specify this field.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Group definitions must refer to other groups by ID.

1-288

ModelAdvisor.Group.ID property

Purpose Identifier for folder

Values String

Description The ID property specifies a permanent, unique identifier for the folder.

Note

• You must specify this field.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Group definitions must refer to other groups by ID.

1-289

ModelAdvisor.Task.ID property

Purpose Identifier for task

Values String

Default: '' (null string)

Description The ID property specifies a permanent, unique identifier for the task.

Note

• The Model Advisor automatically assigns a string to ID if you do
not specify it.

• The value of ID must remain constant.

• The Model Advisor generates an error if ID is not unique.

• Group definitions must refer to tasks using ID.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.ID='Task_ID_1234';

1-290

ModelAdvisor.Check.LicenseName property

Purpose Product license names required to display and run check

Values Cell array of product license names

{}(empty cell array) (default)

Description The LicenseName property specifies a cell array of names for product
licenses required to display and run the check.

When the Model Advisor starts, it tests whether the product license
exists. If you do not meet the license requirements, the Model Advisor
does not display the check.

The Model Advisor performs a checkout of the product licenses when you
run the custom check. If you do not have the product licenses available,
you see an error message that the required license is not available.

Tip To find the text for license strings, type help license at the
MATLAB command line.

1-291

ModelAdvisor.Task.LicenseName property

Purpose Product license names required to display and run task

Values Cell array of product license names

Default: {} (empty cell array)

Description The LicenseName property specifies a cell array of names for product
licenses required to display and run the check.

When the Model Advisor starts, it tests whether the product license
exists. If you do not meet the license requirements, the Model Advisor
does not display the check.

The Model Advisor performs a checkout of the product licenses when you
run the custom check. If you do not have the product licenses available,
you see an error message that the required license is not available.

If you specify ModelAdvisor.Check.LicenseName, the Model Advisor
displays the check when the union of both properties is true.

Tip To find the text for license strings, type help license at the
MATLAB command line.

1-292

ModelAdvisor.Check.ListViewVisible property

Purpose Status of Explore Result button

Values false (default)
true

Description The ListViewVisible property is a Boolean value that sets the status
of the Explore Result button.

true Display the Explore Result button.

false Hide the Explore Result button.

Examples % add 'Explore Result' button
rec.ListViewVisible = true;

1-293

ModelAdvisor.FactoryGroup.MAObj property

Purpose Model Advisor object

Values Handle to a Simulink.ModelAdvisor object

Description The MAObj property specifies a handle to the current Model Advisor
object.

1-294

ModelAdvisor.Group.MAObj property

Purpose Model Advisor object

Values Handle to Simulink.ModelAdvisor object

Description The MAObj property specifies a handle to the current Model Advisor
object.

1-295

ModelAdvisor.Task.MAObj property

Purpose Model Advisor object

Values Handle to a Simulink.ModelAdvisor object

Description The MAObj property specifies the current Model Advisor object.

When adding checks as tasks, the Model Advisor uses the task MAObj
property instead of the check MAObj property.

1-296

cv.cvdatagroup.name property

Purpose cv.cvdatagroup object name

Values name

Description The name property specifies the name of the cv.cvdatagroup object.

Examples cvdg = cvsim(topModelName);
cvdg.name = 'My_Data_Group';

1-297

ModelAdvisor.Action.Name property

Purpose Action button label

Values String

Default: '' (null string)

Description The Name property specifies the label for the action button. This
property is required.

Examples % define action (fix) operation
myAction = ModelAdvisor.Action;
%Specify a callback function for the action
myAction.setCallbackFcn(@sampleActionCB);
myAction.Name='Fix block fonts';

1-298

ModelAdvisor.InputParameter.Name property

Purpose Input parameter name

Values String.

Default: '' (null string)

Description The Name property specifies the name of the input parameter in the
custom check.

Examples inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';

1-299

ModelAdvisor.ListViewParameter.Name property

Purpose Drop-down list entry

Values String

Default: '' (null string)

Description The Name property specifies an entry in the Show drop-down list in the
Model Advisor Result Explorer.

Examples % define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

1-300

ModelAdvisor.Check.Result property

Purpose Results cell array

Values Cell array

Default: {} (empty cell array)

Description The Result property specifies the cell array for storing the results that
are returned by the callback function specified in CallbackHandle.

Tip To set the icon associated with the check, use the
Simulink.ModelAdvisor setCheckResultStatus and
setCheckErrorSeverity methods.

1-301

ModelAdvisor.Check.supportExclusion property

Purpose Set to support exclusions

Values Boolean value specifying that the check supports exclusions.

true The check supports exclusions.
false (default). The check does not support exclusions.

Description The supportExclusion property specifies whether the check supports
exclusions.

'true' Check supports exclusions.

'false' Check does not support exclusions.

Examples % specify that a check supports exclusions
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.supportExclusion = true;

1-302

ModelAdvisor.Check.SupportLibrary property

Purpose Set to support library models

Values Boolean value specifying that the check supports library models.

true. The check supports library models.
false (default). The check does not support library models.

Description The SupportLibrary property specifies whether the check supports
library models.

'true' Check supports library models.

'false' Check does not support library models.

Examples % specify that a check supports library models
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.SupportLibrary = true;

1-303

ModelAdvisor.Check.Title property

Purpose Name of check

Values String

Default: '' (null string)

Description The Title property specifies the name of the check in the Model
Advisor. The Model Advisor displays each custom check in the tree
using the title of the check. Therefore, you should specify a unique title
for each check. When you specify the same title for multiple checks, the
Model Advisor generates a warning.

Examples rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';

1-304

ModelAdvisor.Check.TitleTips property

Purpose Description of check

Values String

Default: '' (null string)

Description The TitleTips property specifies a description of the check. Details
about the check are displayed in the right pane of the Model Advisor.

Examples rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';
rec.TitleTips = 'Example style three callback';

1-305

ModelAdvisor.InputParameter.Type property

Purpose Input parameter type

Values String.

Default: '' (null string)

Description The Type property specifies the type of input parameter.

Use the Type property with the Value and Entries properties to define
input parameters.

Valid values are listed in the following table.

Type Data
Type

Default
Value

Description

Bool Boolean false A check box

ComboBox Cell
array

First entry in
the list

A drop-down menu
• Use Entries to define the
entries in the list.

• Use Value to indicate a
specific entry in the menu
or to enter a value not in
the list.

Enum Cell
array

First entry in
the list

A drop-down menu
• Use Entries to define the
entries in the list.

• Use Value to indicate a
specific entry in the list.

1-306

ModelAdvisor.InputParameter.Type property

Type Data
Type

Default
Value

Description

PushButton N/A N/A A button

When you click the button,
the callback function
specified by Entries is
called.

String String '' (null
string)

A text box

Examples % define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;

1-307

Advisor.authoring.DataFile.validate

Purpose Validate XML data file used for model configuration check

Syntax msg = Advisor.authoring.DataFile.validate(dataFile)

Description msg = Advisor.authoring.DataFile.validate(dataFile) validates
the syntax of the XML data file used for model configuration checks.

Input
Arguments

dataFile XML data file name (string)

Examples dataFile = 'myDataFile.xml';
msg = Advisor.authoring.DataFile.validate(dataFile);

if isempty(msg)
disp('Data file passed the XSD schema validation.');

else
disp(msg);

end

See Also Advisor.authoring.CustomCheck |
Advisor.authoring.generateConfigurationParameterDataFile

How To • “Create Check for Model Configuration Parameters”

1-308

ModelAdvisor.Check.Value property

Purpose Status of check

Values 'true' (default)
'false'

Description The Value property specifies the initial status of the check.

'true' Check is enabled

'false' Check is disabled

Examples % hide all checks that do not belong to Demo group
if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

checkCellArray{i}.Visible = false;
checkCellArray{i}.Value = false;

end

1-309

ModelAdvisor.InputParameter.Value property

Purpose Value of input parameter

Values Depends on the Type property.

Description The Value property specifies the initial value of the input parameter.
This property is valid only when the Type property is one of the
following:

• 'Bool'

• 'String'

• 'Enum'

• 'ComboBox'

Examples % define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;

1-310

ModelAdvisor.Task.Value property

Purpose Status of task

Values 'true' (default) — Initial status of task is enabled
'false' — Initial status of task is disabled

Description The Value property indicates the initial status of a task—whether it is
enabled or disabled.

When adding checks as tasks, the Model Advisor uses the task Value
property instead of the check Value property.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.Value ='false';

1-311

view

Purpose View Model Advisor run results for checks

Syntax view(CheckResultObj)

Description view(CheckResultObj) opens a web browser and displays the results
of the check specified by CheckResultObj. CheckResultObj is a
ModelAdvisor.CheckResult object returned by ModelAdvisor.run.

Input
Arguments

CheckResultObj

ModelAdvisor.CheckResult object which is a part of a
ModelAdvisor.SystemResult object returned by ModelAdvisor.run.

Examples View the Model Advisor run results for the first check in the
slvnvdemo_mdladv_config configuration file:

% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% View the 'Identify unconnected...' check result.

view(SysResultObjArray{1}.CheckResultObjs(1))

Alternatives “View Model Advisor Report”

See Also ModelAdvisor.run | ModelAdvisor.summaryReport | viewReport

Tutorials • “Workflow for Checking Systems Programmatically”

• “Check Multiple Systems in Parallel”

• “Create a Function for Checking Multiple Systems in Parallel”

1-312

view

How To • “Automating Check Execution”

• “Archive and View Model Advisor Run Results”

1-313

viewReport

Purpose View Model Advisor run results for systems

Syntax viewReport(SysResultObjArray)
viewReport(SysResultObjArray,'MA')
viewReport(SysResultObjArray,'Cmd')

Description viewReport(SysResultObjArray) opens the Model Advisor Report for
the system specified by SysResultObjArray. SysResultObjArray is
a ModelAdvisor.SystemResult object returned by ModelAdvisor.run.

viewReport(SysResultObjArray,'MA') opens the Model Advisor
and displays the results of the run for the system specified by
SysResultObjArray.

viewReport(SysResultObjArray,'Cmd') displays the Model Advisor
run summary in the Command Window for the systems specified by
SysResultObjArray.

Input
Arguments

SysResultObjArray

ModelAdvisor.SystemResult object returned by ModelAdvisor.run.

Examples Open the Model Advisor report for
sldemo_auto_climatecontrol/Heater Control.

% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Open the Model Advisor report.

viewReport(SysResultObjArray{1})

1-314

viewReport

Open Model Advisor and display results for
sldemo_auto_climatecontrol/Heater Control.

% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Open the Model Advisor and display results.

viewReport(SysResultObjArray{1}, 'MA')

Display results in the Command Window for
sldemo_auto_climatecontrol/Heater Control.

% Identify Model Advisor configuration file.

% Create list of models to run.

fileName = 'slvnvdemo_mdladv_config.mat';

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control'};

% Run the Model Advisor.

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

% Display results in the Command Window.

viewReport(SysResultObjArray{1}, 'Cmd')

Alternatives • “View Model Advisor Report”

• “View Results in Model Advisor GUI”

• “View Results in Command Window”

See Also ModelAdvisor.run | ModelAdvisor.summaryReport | view

1-315

viewReport

Tutorials • “Workflow for Checking Systems Programmatically”

• “Check Multiple Systems in Parallel”

• “Create a Function for Checking Multiple Systems in Parallel”

How To • “Automating Check Execution”

• “Archive and View Model Advisor Run Results”

1-316

ModelAdvisor.Check.Visible property

Purpose Indicate to display or hide check

Values 'true' (default)
'false'

Description The Visible property specifies whether the Model Advisor displays
the check.

'true' Display the check

'false' Hide the check

Examples % hide all checks that do not belong to Demo group
if ~(strcmp(checkCellArray{i}.Group, 'Demo'))

checkCellArray{i}.Visible = false;
checkCellArray{i}.Value = false;

end

1-317

ModelAdvisor.Task.Visible property

Purpose Indicate to display or hide task

Values 'true' (default) — Display task in the Model Advisor
'false' — Hide task

Description The Visible property specifies whether the Model Advisor displays
the task.

Caution

When adding checks as tasks, you cannot specify both the task and
check Visible properties, you must specify one or the other. If you
specify both properties, the Model Advisor generates an error when the
check Visible property is false.

Examples MAT1 = ModelAdvisor.Task('com.mathworks.sample.TaskSample1');
MAT1.Visible ='false';

1-318

2

Block Reference

System Requirements

Purpose List system requirements in Simulink diagrams

Library Simulink Verification and Validation

Description

The System Requirements block lists all the system requirements
associated with the model or subsystem depicted in the current
diagram. It does not list requirements associated with individual blocks
in the diagram.

You can place this block anywhere in a diagram. It is not connected to
other Simulink blocks. You can only have one System Requirements
block in a diagram.

When you drag the System Requirements block from the Library
Browser into your Simulink diagram, it is automatically populated with
the system requirements, as shown.

2-2

System Requirements

Each of the listed requirements is an active link to the actual
requirements document. When you double-click on a requirement name,
the associated requirements document opens in its editor window,
scrolled to the target location.

If the System Requirements block exists in a diagram, it automatically
updates the requirements listing as you add, modify, or delete
requirements for the model or subsystem.

Dialog
Box and
Parameters

To access the Block Parameters dialog box for the System Requirements
block, right-click on the System Requirements block and, from the
context menu, selectMask Parameters. The Block Parameters dialog
box opens, as shown.

The Block Parameters dialog box for the System Requirements block
contains one parameter.

Block Title
The title of the system requirements list in the diagram. The
default title is System Requirements. You can type a customized
title, for example, Engine Requirements.

2-3

System Requirements

2-4

3

Model Advisor Checks

• “Simulink® Verification and Validation™ Checks” on page 3-2

• “DO-178C/DO-331 Checks” on page 3-7

• “IEC 61508, ISO 26262, and EN 50128 Checks” on page 3-88

• “MathWorks Automotive Advisory Board Checks” on page 3-126

• “Requirements Consistency Checks” on page 3-196

3 Model Advisor Checks

Simulink Verification and Validation Checks

In this section...

“Simulink® Verification and Validation™ Checks Overview” on page 3-2

“Modeling Standards Checks Overview” on page 3-3

“Modeling Standards for MAAB Overview” on page 3-3

“Naming Conventions Overview” on page 3-4

“Model Architecture Overview” on page 3-4

“Model Configuration Options Overview” on page 3-5

“Simulink Overview” on page 3-5

“Stateflow Overview” on page 3-5

“MATLAB Functions Overview” on page 3-6

Simulink Verification and Validation Checks
Overview
Simulink Verification and Validation checks facilitate designing and
troubleshooting models from which code is generated for applications that
must meet safety or mission-critical requirements, modeling guidelines, or
requirements consistency.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the Simulink Verification and Validation
checks.

For descriptions of the modeling standards checks, see

• “DO-178C/DO-331 Checks” on page 3-7

• “IEC 61508, ISO 26262, and EN 50128 Checks” on page 3-88

• “MathWorks Automotive Advisory Board Checks” on page 3-126

For descriptions of the requirements consistency checks, see “Requirements
Consistency Checks” on page 3-196.

3-2

Simulink® Verification and Validation™ Checks

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder™ Checks”

Modeling Standards Checks Overview
Modeling standards checks facilitate designing and troubleshooting models
from which code is generated for applications that must meet safety or
mission-critical requirements or MathWorks® Automotive Advisory Board
(MAAB) modeling guidelines.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the modeling standards checks.

For descriptions of the modeling standards checks, see

• “DO-178C/DO-331 Checks” on page 3-7

• “IEC 61508, ISO 26262, and EN 50128 Checks” on page 3-88

• “MathWorks Automotive Advisory Board Checks” on page 3-126

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

Modeling Standards for MAAB Overview
Group of MathWorks Automotive Advisory Board (MAAB) checks. MAAB
checks facilitate designing and troubleshooting models from which code is
generated for automotive applications.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the modeling standards for MAAB checks.

3-3

3 Model Advisor Checks

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

• “MAAB Control Algorithm Modeling” guidelines

Naming Conventions Overview
Group of MathWorks Automotive Advisory Board (MAAB) checks related to
naming conventions.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the naming conventions checks.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

• “MAAB Control Algorithm Modeling” guidelines

Model Architecture Overview
Group of MathWorks Automotive Advisory Board (MAAB) checks related
to model architecture.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the model architecture checks.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

3-4

Simulink® Verification and Validation™ Checks

• “MAAB Control Algorithm Modeling” guidelines

Model Configuration Options Overview
Group of MathWorks Automotive Advisory Board (MAAB) checks related to
model configuration options.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the model configuration options checks.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

• “MAAB Control Algorithm Modeling” guidelines

Simulink Overview
Group of MathWorks Automotive Advisory Board (MAAB) checks related to
the Simulink product.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the MAAB checks related to the Simulink
product.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

• “MAAB Control Algorithm Modeling” guidelines

Stateflow Overview
Group of MathWorks Automotive Advisory Board (MAAB) checks related to
the Stateflow product.

3-5

3 Model Advisor Checks

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the MAAB checks related to the Stateflow
product.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

• “MAAB Control Algorithm Modeling” guidelines

MATLAB Functions Overview
MathWorks Automotive Advisory Board (MAAB) checks related to MATLAB
functions.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the MAAB checks related to MATLAB
functions.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Simulink Coder Checks”

• “MAAB Control Algorithm Modeling” guidelines

3-6

DO-178C/DO-331 Checks

DO-178C/DO-331 Checks

In this section...

“DO-178C/DO-331 Checks Overview” on page 3-8

“Check safety-related optimization settings” on page 3-10

“Check safety-related diagnostic settings for solvers” on page 3-14

“Check safety-related diagnostic settings for sample time” on page 3-17

“Check safety-related diagnostic settings for signal data” on page 3-20

“Check safety-related diagnostic settings for parameters” on page 3-23

“Check safety-related diagnostic settings for data used for debugging” on
page 3-26

“Check safety-related diagnostic settings for data store memory” on page
3-28

“Check safety-related diagnostic settings for type conversions” on page 3-30

“Check safety-related diagnostic settings for signal connectivity” on page
3-32

“Check safety-related diagnostic settings for bus connectivity” on page 3-34

“Check safety-related diagnostic settings that apply to function-call
connectivity” on page 3-36

“Check safety-related diagnostic settings for compatibility” on page 3-38

“Check safety-related diagnostic settings for model initialization” on page
3-40

“Check safety-related diagnostic settings for model referencing” on page
3-43

“Check safety-related model referencing settings” on page 3-46

“Check safety-related code generation settings” on page 3-48

“Check safety-related diagnostic settings for saving” on page 3-55

“Check for blocks that do not link to requirements” on page 3-57

“Check usage of Math blocks” on page 3-58

“Check state machine type of Stateflow charts” on page 3-60

3-7

3 Model Advisor Checks

In this section...

“Check Stateflow charts for ordering of states and transitions” on page 3-62

“Check Stateflow debugging options” on page 3-64

“Check usage of lookup table blocks” on page 3-66

“Check MATLAB Code Analyzer messages” on page 3-68

“Check MATLAB code for global variables” on page 3-70

“Check for inconsistent vector indexing methods” on page 3-71

“Check for MATLAB Function block interfaces with inherited properties”
on page 3-72

“Check MATLAB Function block metrics” on page 3-74

“Check for blocks not recommended for C/C++ production code deployment”
on page 3-76

“Check Stateflow charts for uniquely defined data objects” on page 3-77

“Check usage of Math Operations blocks” on page 3-78

“Check usage of Signal Routing blocks” on page 3-81

“Check usage of Logic and Bit Operations blocks” on page 3-82

“Check usage of Ports and Subsystems blocks” on page 3-84

“Display model version information” on page 3-87

DO-178C/DO-331 Checks Overview
DO-178C/DO-331 checks facilitate designing and troubleshooting models
from which code is generated for applications that must meet safety or
mission-critical requirements.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the DO-178C/DO-331 checks.

See Also

• “Consult the Model Advisor”

3-8

DO-178C/DO-331 Checks

• “Simulink Checks”

• “Simulink Coder Checks”

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-9

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related optimization settings
Check model configuration for optimization settings that can impact safety.

Description
This check verifies that model optimization configuration parameters are set
optimally for generating code for a safety-related application. Although highly
optimized code is desirable for most real-time systems, some optimizations
can have undesirable side effects that impact safety.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Block reduction optimization is selected.
This optimization can remove blocks from
generated code, resulting in requirements
without associated code and violations for
traceability requirements. (See DO-331,
Section MB.6.3.4.e—Source code is traceable
to low-level requirements.)

Clear the Block reduction check box on
the Optimization pane of the Configuration
Parameters dialog box or set the parameter
BlockReduction to off.

Implementation of logic signals as Boolean
data is cleared. Strong data typing is
recommended for safety-related code. (See
DO-331, Section MB.6.3.1.e—High-level
requirements conform to standards,
DO-331, Section MB.6.3.2.e—Low-level
requirements conform to standards, and
MISRA-C:2004, Rule 12.6.)

Select Implement logic signals as boolean
data (vs. double) on the Optimization pane of
the Configuration Parameters dialog box or set
the parameter BooleanDataType to on.

3-10

DO-178C/DO-331 Checks

Condition Recommended Action

The model includes blocks that depend on
elapsed or absolute time and is configured to
minimize the amount of memory allocated
for the timers. Such a configuration limits
the number of days the application can
execute before a timer overflow occurs.
Many aerospace products are powered on
continuously and timers should not assume
a limited lifespan. (See DO-331, Section
MB.6.3.1.g—Algorithms are accurate,
DO-331, Section MB.6.3.2.g—Algorithms
are accurate, and MISRA-C:2004, Rule
12.11.)

Set Application lifespan (days) on the
Optimization pane of the Configuration
Parameters dialog box or set the parameter
LifeSpan to inf.

The optimization that suppresses the
generation of initialization code for
root-level inports and outports that are
set to zero is selected. For safety-related
code, you should explicitly initialize
all variables. (See DO-331, Section
MB.6.3.3.b—Software architecture is
consistent and MISRA-C:2004, Rule 9.1.)

If you have a Embedded Coder license, and you
are using an ERT-based system target file, clear
the Remove root level I/O zero initialization
check box on the Optimization pane of the
Configuration Parameters dialog box or set the
parameter ZeroExternalMemoryAtStartup to on.
Alternatively, integrate external, hand-written
code that initializes all I/O variables to zero
explicitly.

The optimization that suppresses the
generation of initialization code for internal
work structures, such as block states and
block outputs that are set to zero, is selected.
For safety-related code, you should explicitly
initialize every variable. (See DO-331,
Section MB.6.3.3.b—Software architecture
is consistent and MISRA-C:2004, Rule 9.1.)

If you have a Embedded Coder license, and you
are using an ERT-based system target file, clear
the Remove internal data zero initialization
check box on the Optimization pane of the
Configuration Parameters dialog box or set the
parameter ZeroInternalMemoryAtStartup to on.
Alternatively, integrate external, hand-written
code that initializes every state variable to zero
explicitly.

3-11

3 Model Advisor Checks

Condition Recommended Action

The optimization that suppresses
generation of code resulting from
floating-point to integer conversions that
wrap out-of-range values is cleared. You
must avoid overflows for safety-related
code. When this optimization is off
and your model includes blocks that
disable the Saturate on overflow
parameter, the code generator wraps
out-of-range values for those blocks. This
can result in unreachable and, therefore,
untestable code. (See DO-331, Section
MB.6.3.1.g—Algorithms are accurate,
DO-331, Section MB.6.3.2.g—Algorithms
are accurate, and MISRA-C:2004, Rule
12.11.)

If you have a Simulink Coder license, select
Remove code from floating-point to integer
conversions that wraps out-of-range values
on the Optimization pane of the Configuration
Parameters dialog box or set the parameter
EfficientFloat2IntCast to on.

The optimization that suppresses generation
of code that guards against division by
zero for fixed-point data is selected. You
must avoid division-by-zero exceptions in
safety-related code. (See DO-331, Section
MB.6.3.1.g—Algorithms are accurate,
DO-331, Section MB.6.3.2.g—Algorithms
are accurate, and MISRA-C:2004, Rule
21.1.)

If you have a Embedded Coder license, and
you are using an ERT-based system target file,
clear the Remove code that protects against
division arithmetic exceptions check box on
the Optimization pane of the Configuration
Parameters dialog box or set the parameter
NoFixptDivByZeroProtection to off.

The optimization that uses the specified
minimum and maximum values for signals
and parameters to optimize the generated
code is selected. This might result in
requirements without traceable code. (See
DO-331 Section MB.6.3.4.e - Source code is
traceable to low-level requirements.)

If you have a Embedded Coder license, and
you are using an ERT-based system target
file, clear the “Optimize using the specified
minimum and maximum values” check box
on the Optimization pane of the Configuration
Parameters dialog box.

Action Results
Clicking Modify Settings configures model optimization settings that can
impact safety.

3-12

DO-178C/DO-331 Checks

Subchecks depend on the results of the subchecks noted with D in the results
table in the Model Advisor window.

See Also

• “Optimization Pane: General” in the Simulink graphical user interface
documentation

• “Optimize Buffers in the Generated Code” in the Simulink Coder
documentation

• “Optimize Generated Code Using Specified Minimum and Maximum
Values” in the Embedded Coder documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-13

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings for solvers
Check model configuration for diagnostic settings that apply to solvers and
that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to solvers are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting automatic
breakage of algebraic loops is set to none
or warning. The breaking of algebraic
loops can affect the predictability of the
order of block execution. For safety-related
applications, a model developer needs to
know when such breaks occur. (See DO-331,
Section MB.6.3.3.e – Software architecture
conforms to standards.)

Set Algebraic loop on theDiagnostics > Solver
pane of the Configuration Parameters dialog box
or set the parameter AlgebraicLoopMsg to error.
Consider breaking such loops explicitly with
Unit Delay blocks so that the execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

The diagnostic for detecting automatic
breakage of algebraic loops for Model
blocks, atomic subsystems, and enabled
subsystems is set to none or warning.
The breaking of algebraic loops can affect
the predictability of the order of block
execution. For safety-related applications,
a model developer needs to know when
such breaks occur. (See DO-331, Section
MB.6.3.3.e – Software architecture conforms
to standards.)

Set Minimize algebraic loop on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
ArtificialAlgebraicLoopMsg to error.
Consider breaking such loops explicitly with
Unit Delay blocks so that the execution order is
predictable. At a minimum, verify that the results
of loops breaking automatically are acceptable.

3-14

DO-178C/DO-331 Checks

Condition Recommended Action

The diagnostic for detecting potential
conflict in block execution order is set
to none or warning. For safety-related
applications, block execution order must
be predictable. A model developer needs to
know when conflicting block priorities exist.
(See DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set Block priority violation on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
BlockPriorityViolationMsg to error.

The diagnostic for detecting whether a model
contains an S-function that has not been
specified explicitly to inherit sample time
is set to none or warning. These settings
can result in unpredictable behavior. A
model developer needs to know when such
an S-function exists in a model so it can be
modified to produce predictable behavior.
(See DO-331, Section MB.6.3.3.e – Software
architecture conforms to standards.)

Set Unspecified inheritability of sample
times on the Diagnostics > Solver pane of the
Configuration Parameters dialog box or set the
parameter UnknownTsInhSupMsg to error.

The diagnostic for detecting whether the
Simulink software automatically modifies
the solver, step size, or simulation stop time
is set to none or warning. Such changes
can affect the operation of generated
code. For safety-related applications, it is
better to detect such changes so a model
developer can explicitly set the parameters
to known values. (See DO-331, Section
MB.6.3.3.e – Software architecture conforms
to standards.)

Set Automatic solver parameter selection
on the Diagnostics > Solver pane of the
Configuration Parameters dialog box or set the
parameter SolverPrmCheckMsg to error.

The diagnostic for detecting when a name
is used for more than one state in the
model is set to none. State names within a
model should be unique. For safety-related
applications, it is better to detect name
clashes so a model developer can fix them.
(See DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set State name clash on the
Diagnostics > Solver pane of the Configuration
Parameters dialog box or set the parameter
StateNameClashWarn to warning.

3-15

3 Model Advisor Checks

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
solvers and that can impact safety.

See Also

• “Diagnostics Pane: Solver” in the Simulink graphical user interface
documentation

• “Manage Errors and Warnings” in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-16

http://www.rtca.org/

DO-178C/DO-331 Checks

Check safety-related diagnostic settings for sample
time
Check model configuration for diagnostic settings that apply to sample time
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to sample times are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic for detecting when a source
block, such as a Sine Wave block, inherits a
sample time (specified as -1) is set to none or
warning. The use of inherited sample times
for a source block can result in unpredictable
execution rates for the source block and
blocks connected to it. For safety-related
applications, source blocks should have
explicit sample times to prevent incorrect
execution sequencing. (See DO-331, Section
MB.6.3.3.e – Software architecture conforms
to standards.)

Set Source block specifies -1 sample time on
the Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter InheritedTslnSrcMsg to error.

The diagnostic for detecting whether the
input for a discrete block, such as the
Unit Delay block, is a continuous signal
is set to none or warning. Signals with
continuous sample times should not be used
for embedded real-time code. (See DO-331,
Section MB.6.3.3.e – Software architecture
conforms to standards.)

Set Discrete used as continuous on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter DiscreteInheritContinuousMsg to
error.

3-17

3 Model Advisor Checks

Condition Recommended Action

The diagnostic for detecting invalid rate
transitions between two blocks operating in
multitasking mode is set to none or warning.
Such rate transitions should not be used
for embedded real-time code. (See DO-331,
Section MB.6.3.3.b – Software architecture
is consistent.)

Set Multitask rate transition on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter MultiTaskRateTransMsg to error.

The diagnostic for detecting subsystems
that can cause data corruption or
nondeterministic behavior is set to none or
warning. This diagnostic detects whether
conditionally executed multirate subsystems
(enabled, triggered, or function-call
subsystems) operate in multitasking
mode. Such subsystems can corrupt data
and behave unpredictably in real-time
environments that allow preemption. (See
DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set Multitask conditionally executed
subsystem on the Diagnostics > Sample Time
pane of the Configuration Parameters dialog box
or set the parameter MultiTaskCondExecSysMsg
to error.

The diagnostic for checking sample time
consistency between a Signal Specification
block and the connected destination block is
set to none or warning. An over-specified
sample time can result in an unpredictable
execution rate. (See DO-331, Section
MB.6.3.3.e – Software architecture conforms
to standards.)

Set Enforce sample times specified
by Signal Specification blocks on the
Diagnostics > Sample Time pane of the
Configuration Parameters dialog box or set the
parameter SigSpecEnsureSampleTimeMsg to
error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
sample time and that can impact safety.

3-18

DO-178C/DO-331 Checks

See Also

• “Diagnostics Pane: Sample Time” in the Simulink graphical user interface
documentation

• “Manage Errors and Warnings” in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-19

http://www.rtca.org

3 Model Advisor Checks

Check safety-related diagnostic settings for signal
data
Check model configuration for diagnostic settings that apply to signal data
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to signal data are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that specifies how the
Simulink software resolves signals
associated with Simulink.Signal objects in
the MATLAB workspace is set to Explicit
and implicit or Explicit and warn
implicit. For safety-related applications,
model developers should be required to
define signal resolution explicitly. (See
DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set Signal resolution on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set
the parameter SignalResolutionControl to
Explicit only. This provides predictable
operation by requiring users to define each
signal and block setting that must resolve to
Simulink.Signal objects in the workspace.

The Product block diagnostic that detects
a singular matrix while inverting one of
its inputs in matrix multiplication mode
is set to none or warning. Division by
a singular matrix can result in numeric
exceptions when executing generated code.

Set Division by singular matrix on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter CheckMatrixSingularityMsg to
error.

3-20

DO-178C/DO-331 Checks

Condition Recommended Action

This is not acceptable in safety-related
systems. (See DO-331, Section MB.6.3.1.g –
Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA-C:2004, Rule 21.1.)

The diagnostic that detects when the
Simulink software cannot infer the data
type of a signal during data type propagation
is set to none or warning. For safety-related
applications, model developers must
verify the data types of signals. (See
DO-331, Section MB.6.3.1.e – High-level
requirements conform to standards, and
DO-331, Section MB.6.3.2.e – Low-level
requirements conform to standards.)

Set Underspecified data types on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter UnderSpecifiedDataTypeMsg to
error.

The diagnostic that detects whether the
value of a signal or parameter is too
large to be represented by the signal or
parameter’s data type is set to none or
warning. Undetected numeric overflows
can result in unexpected application
behavior. (See DO-331, Section MB.6.3.1.g
– Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA-C:2004, Rule 21.1.)

Set Detect overflow on the Diagnostics > Data
Validity pane of the Configuration
Parameters dialog box or set the parameter
IntegerOverflowMsg to error.

The diagnostic that detects when the value
of a block output signal is Inf or NaN at
the current time step is set to none or
warning. When this type of block output
signal condition occurs, numeric exceptions
can result, and numeric exceptions are not
acceptable in safety-related applications.
(See DO-331, Section MB.6.3.1.g –
Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA-C:2004, Rule 21.1.)

Set Inf or NaN block output on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter SignalInfNanChecking to error.

3-21

3 Model Advisor Checks

Condition Recommended Action

The diagnostic that detects Simulink object
names that begin with rt is set to none or
warning. This diagnostic prevents name
clashes with generated signal names that
have an rt prefix. (See DO-331, Section
MB.6.3.1.e – High-level requirements
conform to standards, and DO-331, Section
MB.6.3.2.e – Low-level requirements
conform to standards.)

Set "rt" prefix for identifiers on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter RTPrefix to error.

The diagnostic that detects simulation
range checking is set to none or warning.
This diagnostic detects when signals exceed
their specified ranges during simulation.
Simulink compares the signal values that a
block outputs with the specified range and
the block data type. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate,
DO-331, Section MB.6.3.2.g – Algorithms
are accurate, and MISRA-C:2004, Rule
21.1.)

Set Simulation range checking on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter SignalRangeChecking to error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
signal data and that can impact safety.

See Also

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

• “Manage Errors and Warnings” in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-22

http://www.rtca.org

DO-178C/DO-331 Checks

Check safety-related diagnostic settings for
parameters
Check model configuration for diagnostic settings that apply to parameters
and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to parameters are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a
parameter downcast occurs is set to none
or warning. A downcast to a lower signal
range can result in numeric overflows
of parameters, resulting in unexpected
behavior. (See DO-331, Section MB.6.3.1.g
– Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA-C:2004, Rule 21.1.)

Set Detect downcast on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterDowncastMsg to error.

The diagnostic that detects when a
parameter underflow occurs is set to
none or warning. When the data type
of a parameter does not have enough
resolution, the parameter value is zero
instead of the specified value. This can
lead to incorrect operation of generated
code. (See DO-331, Section MB.6.3.1.g –
Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA-C:2004, Rule 21.1.)

Set Detect underflow on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterUnderflowMsg to error.

3-23

3 Model Advisor Checks

Condition Recommended Action

The diagnostic that detects when a
parameter overflow occurs is set to none or
warning. Numeric overflows can result in
unexpected application behavior and should
be detected and fixed in safety-related
applications. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate,
DO-331, Section MB.6.3.2.g – Algorithms are
accurate, and MISRA-C:2004, Rule 21.1.)

SetDetect overflow on theDiagnostics > Data
Validity pane of the Configuration
Parameters dialog box or set the parameter
ParameterOverflowMsg to error.

The diagnostic that detects when a
parameter loses precision is set to none
or warning. Not detecting such errors
can result in a parameter being set
to an incorrect value in the generated
code. (See DO-331, Section MB.6.3.1.g –
Algorithms are accurate, DO-331, Section
MB.6.3.2.g – Algorithms are accurate, and
MISRA-C:2004, Rules 10.1, 10.2, 10.3, and
10.4.)

Set Detect precision loss on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set
the parameter ParameterPrecisionLossMsg to
error.

The diagnostic that detects when an
expression with tunable variables is reduced
to its numerical equivalent is set to none
or warning. This can result in a tunable
parameter unexpectedly not being tunable
in generated code. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms
are accurate.)

Set Detect loss of tunability on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ParameterTunabilityLossMsg to
error.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
parameters and that can impact safety.

3-24

DO-178C/DO-331 Checks

See Also

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

• “Manage Errors and Warnings” in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on the
DO-178C, Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-25

http://www.rtca.org

3 Model Advisor Checks

Check safety-related diagnostic settings for data
used for debugging
Check model configuration for diagnostic settings that apply to data used for
debugging and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to debugging are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that enables model
verification blocks is set to Use local
settings or Enable all. Such blocks
should be disabled because they are
assertion blocks, which are for verification
only. Model developers should not use
assertions in embedded code.

Set Model Verification block enabling on
the Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter AssertControl to Disable All.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
data used for debugging and that can impact safety.

See Also

• DO-331, Section MB.6.3.1.e – High-level requirements conform to standards

• DO-331, Section MB.6.3.2.e – Low-level requirements conform to standards

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

3-26

DO-178C/DO-331 Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-27

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings for data
store memory
Check model configuration for diagnostic settings that apply to data store
memory and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to data store memory are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether the
model attempts to read data from a data
store in which it has not stored data in the
current time step is set to a value other
than Enable all as errors. Reading data
before it is written can result in use of stale
data or data that is not initialized.

Set Detect read before write on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter ReadBeforeWriteMsg to Enable all
as errors.

The diagnostic that detects whether the
model attempts to store data in a data store,
after previously reading data from it in the
current time step, is set to a value other
than Enable all as errors. Writing data
after it is read can result in use of stale or
incorrect data.

Set Detect write after read on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter WriteAfterReadMsg to Enable all
as errors.

3-28

DO-178C/DO-331 Checks

Condition Recommended Action

The diagnostic that detects whether the
model attempts to store data in a data store
twice in succession in the current time step
is set to a value other than Enable all as
errors. Writing data twice in one time step
can result in unpredictable data.

Set Detect write after write on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter WriteAfterWriteMsg to Enable all
as errors.

The diagnostic that detects when one task
reads data from a Data Store Memory block
to which another task writes data is set to
none or warning. Reading or writing data in
different tasks in multitask mode can result
in corrupted or unpredictable data.

Set Multitask data store on the
Diagnostics > Data Validity pane of the
Configuration Parameters dialog box or set the
parameter MultiTaskDSMMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to data store memory and that can impact safety.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-29

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings for type
conversions
Check model configuration for diagnostic settings that apply to type
conversions and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to type conversions are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects Data Type
Conversion blocks used where there is not
type conversion is set to none. The Simulink
software might remove unnecessary Data
Type Conversion blocks from generated
code. This might result in requirements
without corresponding code. The removal
of such blocks need to be detected so model
developers can remove the unnecessary
blocks explicitly. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms
are accurate.)

Set Unnecessary type conversions on the
Diagnostics > Type Conversion pane of the
Configuration Parameters dialog box or set the
parameter UnnecessaryDatatypeConvMsg to
warning.

The diagnostic that detects vector-to-matrix
or matrix-to-vector conversions at block
inputs is set to none or warning. When the
Simulink software automatically converts
between vector and matrix dimensions,
unintended operations or unpredictable
behavior can occur. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and

Set Vector/matrix block input conversion on
the Diagnostics > Type Conversion pane of
the Configuration Parameters dialog box or set
the parameter VectorMatrixConversionMsg to
error.

3-30

DO-178C/DO-331 Checks

Condition Recommended Action

DO-331, Section MB.6.3.2.g – Algorithms
are accurate.)

The diagnostic that detects when a 32-bit
integer value is converted to a floating-point
value is set to none. This type of conversion
can result in a loss of precision due to
truncation of the least significant bits for
large integer values. (See DO-331, Section
MB.6.3.1.g – Algorithms are accurate and
DO-331, Section MB.6.3.2.g – Algorithms are
accurate, and MISRA-C:2004, Rules 10.1,
10.2, 10.3, and 10.4.)

Set 32-bit integer to single precision float
conversion on the Diagnostics > Type
Conversion pane of the Configuration
Parameters dialog box or set the parameter
Int32ToFloatConvMsg to warning.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
type conversions and that can impact safety.

See Also

• “Diagnostics Pane: Type Conversion” in the Simulink graphical user
interface documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-31

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings for signal
connectivity
Check model configuration for diagnostic settings that apply to signal
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to signal connectivity are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects virtual signals
that have a common source signal but
different labels is set to none or warning.
This diagnostic pertains to virtual signals
only and has no effect on generated code.
However, signal label mismatches can lead
to confusion during model reviews.

Set Signal label mismatch on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter SignalLabelMismatchMsg to error.

The diagnostic that detects when the model
contains a block with an unconnected input
signal is set to none or warning. This must
be detected because code is not generated for
unconnected block inputs.

Set Unconnected block input ports on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedInputMsg to error.

3-32

DO-178C/DO-331 Checks

Condition Recommended Action

The diagnostic that detects when the model
contains a block with an unconnected output
signal is set to none or warning. This must
be detected because dead code can result
from unconnected block output signals.

Set Unconnected block output ports on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedOutputMsg to error.

The diagnostic that detects unconnected
signal lines and unmatched Goto or From
blocks is set to none or warning. This
error must be detected because code is not
generated for unconnected lines.

Set Unconnected line on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter UnconnectedLineMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to signal connectivity and that can impact safety.

See Also

• DO-331, Section MB.6.3.1.e – High-level requirements conform to standards

• DO-331, Section MB.6.3.2.e – Low-level requirements conform to standards

• “Diagnostics Pane: Connectivity” in the Simulink graphical user interface
documentation

• “Signal Basics” in the Simulink documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-33

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings for bus
connectivity
Check model configuration for diagnostic settings that apply to bus
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to bus connectivity are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a Model
block’s root Outport block is connected to a
bus but does not specify a bus object is set to
none or warning. For a bus signal to cross a
model boundary, the signal must be defined
as a bus object for compatibility with higher
level models that use a model as a reference
model.

Set Unspecified bus object at root Outport
block on the Diagnostics > Connectivity pane
of the Configuration Parameters dialog box or set
the parameter RootOutportRequireBusObject
to error.

The diagnostic that detects whether the
name of a bus element matches the name
specified by the corresponding bus object
is set to none or warning. This diagnostic
prevents the use of incompatible buses in
a bus-capable block such that the output
names are inconsistent.

Set Element name mismatch on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter BusObjectLabelMismatch to error.

The diagnostic that detects when some
blocks treat a signal as a mux/vector,
while other blocks treat the signal as a
bus, is set to none or warning. When the
Simulink software automatically converts
a muxed signal to a bus, it is possible for

• Set Mux blocks used to create bus signals
on the Diagnostics > Connectivity pane of
the Configuration Parameters dialog box to
error, or set the parameter StrictBusMsg to
ErrorOnBusTreatedAsVector.

3-34

DO-178C/DO-331 Checks

Condition Recommended Action

an unintended operation or unpredictable
behavior to occur. • Set “Bus signal treated as vector” on the

Diagnostics > Connectivity pane of the
Configuration Parameters dialog box to
error, or the parameter StrictBusMsg to
ErrorOnBusTreatedAsVector.

You can use the Model Advisor or the
slreplace_mux utility function to replace all Mux
block used as bus creators with a Bus Creator
block.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
bus connectivity and that can impact safety.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent

• “Diagnostics Pane: Connectivity” in the Simulink graphical user interface
documentation

• Simulink.Bus in the Simulink reference documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-35

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings that apply
to function-call connectivity
Check model configuration for diagnostic settings that apply to function-call
connectivity and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to function-call connectivity are set optimally for generating code for a
safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects incorrect use
of a function-call subsystem is set to none
or warning. If this condition is undetected,
incorrect code might be generated.

Set Invalid function-call connection on
the Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter InvalidFcnCallConMsg to error.

The diagnostic that specifies whether the
Simulink software has to compute inputs
of a function-call subsystem directly or
indirectly while executing the subsystem is
set to Use local settings or Disable all.
This diagnostic detects unpredictable data
coupling between a function-call subsystem
and the inputs of the subsystem in the
generated code.

Set Context-dependent inputs on the
Diagnostics > Connectivity pane of the
Configuration Parameters dialog box or set the
parameter FcnCallInpInsideContextMsg to
Enable all.

Action Results
ClickingModify Settings configures model diagnostic settings that apply to
function-call connectivity and that can impact safety.

3-36

DO-178C/DO-331 Checks

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent

• “Diagnostics Pane: Connectivity” in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-37

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings for
compatibility
Check model configuration for diagnostic settings that affect compatibility
and that might impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to compatibility are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects when a block
has not been upgraded to use features of the
current release is set to none or warning.
An S-function written for an earlier version
might not be compatible with the current
version and generated code could operate
incorrectly.

Set S-function upgrades needed on the
Diagnostics > Compatibility pane of the
Configuration Parameters dialog box or set the
parameter SFcnCompatibilityMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that affect
compatibility and that might impact safety.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent

• MISRA-C:2004, Rule 9.1

• “Manage Errors and Warnings” in the Simulink documentation

• “Diagnostics Pane: Compatibility” in the Simulink graphical user interface
documentation

3-38

DO-178C/DO-331 Checks

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-39

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related diagnostic settings for model
initialization
In the model configuration, check diagnostic settings that affect model
initialization and might impact safety.

Description
This check verifies that model diagnostic configuration parameters for
initialization are optimally set to generate code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, the “Underspecified initialization
detection” diagnostic is set to Classic,
ensuring compatibility with previous releases
of Simulink. The “Check undefined
subsystem initial output” diagnostic is
cleared. This diagnostic specifies whether
Simulink displays a warning if the model
contains a conditionally executed subsystem, in
which a block with a specified initial condition
drives an Outport block with an undefined
initial condition. A conditionally executed
subsystem could have an output that is not
initialized. If undetected, this condition can
produce behavior that is nondeterministic.

Do one of the following:

• In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, set “Underspecified initialization
detection” to Simplified.

• In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, set “Underspecified initialization
detection” to Classic and select “Check
undefined subsystem initial output”.

• Set the parameter
CheckSSInitialOutputMsg to on.

In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, the “Underspecified initialization
detection” diagnostic is set to Classic,
ensuring compatibility with previous releases
of Simulink. The “Check preactivation

Do one of the following:

• In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, set “Underspecified initialization
detection” to Simplified.

3-40

DO-178C/DO-331 Checks

Condition Recommended Action

output of execution context” diagnostic
is cleared. This diagnostic detects potential
initial output differences from earlier releases.
A conditionally executed subsystem could have
an output that is not initialized. If undetected,
this condition can produce behavior that is
nondeterministic.

• In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, set “Underspecified initialization
detection” to Classic and select “Check
preactivation output of execution
context”.

• Set the parameter
CheckExecutionContextPreStartOutputMsg
to on.

In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, the “Underspecified initialization
detection” diagnostic is set to Classic,
ensuring compatibility with previous releases
of Simulink. The “Check runtime output of
execution context” diagnostic is cleared. This
diagnostic detects potential output differences
from earlier releases. A conditionally executed
subsystem could have an output that is not
initialized and feeds into a block with a tunable
parameter. If undetected, this condition can
cause the behavior of the downstream block to
be nondeterministic.

Do one of the following:

• In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, set “Underspecified initialization
detection” to Simplified.

• In the Configuration Parameters dialog
box, on the Diagnostics > Data Validity
pane, set “Underspecified initialization
detection” to Classic and select “Check
runtime output of execution context”.

• Set the parameter
CheckExecutionContextRuntimeOutputMsg
to on.

Action Results
To configure the diagnostic settings that affect model initialization and might
impact safety, click Modify Settings.

Subchecks depend on the results of the subchecks noted with D in the results
table in the Model Advisor window.

See Also

• DO-331, Section MB.6.3.3.b – Software architecture is consistent

3-41

3 Model Advisor Checks

• MISRA-C:2004, Rule 9.1

• “Manage Errors and Warnings” in the Simulink documentation

• “Diagnostics Pane: Data Validity” in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-42

http://www.rtca.org/

DO-178C/DO-331 Checks

Check safety-related diagnostic settings for model
referencing
Check model configuration for diagnostic settings that apply to model
referencing and that can impact safety.

Description
This check verifies that model diagnostic configuration parameters pertaining
to model referencing are set optimally for generating code for a safety-related
application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects a mismatch
between the version of the model that
creates or refreshes a Model block and the
current version of the referenced model is set
to error or warning. The detection occurs
during load and update operations. When
you get the latest version of the referenced
model from the software configuration
management system, rather than an
older version that was used in a previous
simulation, if this diagnostic is set to error,
the simulation is aborted. If the diagnostic
is set to warning, a warning message is
issued. To resolve the issue, the user must
resave the model being simulated, which
may not be the desired action. (See DO-331,
Section MB.6.3.3.b – Software architecture
is consistent.)

Set Model block version mismatch on
the Diagnostics > Model Referencing
pane of the Configuration Parameters
dialog box or set the parameter
ModelReferenceVersionMismatchMessage
to none.

The diagnostic that detects port and
parameter mismatches during model loading
and updating is set to none or warning. If
undetected, such mismatches can lead to

Set Port and parameter mismatch on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the

3-43

3 Model Advisor Checks

Condition Recommended Action

incorrect simulation results because the
parent and referenced models have different
interfaces. (See DO-331, Section MB.6.3.3.b
– Software architecture is consistent.)

parameter ModelReferenceIOMismatchMessage
to error.

The Model configuration mismatch
diagnostic is set to none or error. This
diagnostic checks whether the configuration
parameters of a model referenced by
the current model match the current
model’s configuration parameters or are
inappropriate for a referenced model.
Some diagnostics for referenced models
are not supported in simulation mode.
Setting this diagnostic to error can prevent
simulations from running. Some differences
in configurations can lead to incorrect
simulation results and mismatches between
simulation and target code generation. (See
DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set Model configuration mismatch on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the
parameter ModelReferenceCSMismatchMessage
to warning.

The diagnostic that detects invalid internal
connections to the current model’s root-level
Inport and Outport blocks is set to none or
warning. When this condition is detected,
the Simulink software might automatically
insert hidden blocks into the model to
fix the condition. The hidden blocks can
result in generated code without traceable
requirements. Setting the diagnostic to
error forces model developers to fix the
referenced models manually. (See DO-331,
Section MB.6.3.3.b – Software architecture
is consistent.)

Set Invalid root Inport/Outport block
connection on the Diagnostics > Model
Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferenceIOMessage to error.

The diagnostic that detects whether To
Workspace or Scope blocks are logging data
in a referenced model is set to none or

Set Unsupported data logging on the
Diagnostics > Model Referencing pane of the
Configuration Parameters dialog box or set the

3-44

DO-178C/DO-331 Checks

Condition Recommended Action

warning. Data logging is not supported for
To Workspace and Scope blocks in referenced
models. (See DO-331, Section MB.6.3.1.d –
High-level requirements are verifiable and
DO-331, Section MB.6.3.2.d – Low-level
requirements are verifiable.)

parameter ModelReferenceDataLoggingMessage
to error.
To log data, remove the blocks and log the
referenced model signals. For more information,
see “Logging Referenced Model Signals”.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to model referencing and that can impact safety.

See Also

• “Manage Errors and Warnings” in the Simulink documentation

• “Diagnostics Pane: Model Referencing” in the Simulink graphical user
interface documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

• “Logging Referenced Model Signals” in the Simulink documentation

3-45

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related model referencing settings
Check model configuration for model referencing settings that can impact
safety.

Description
This check verifies that model configuration parameters for model referencing
are set optimally for generating code for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The referenced model is configured such
that its target is rebuilt whenever you
update, simulate, or generate code for
the model, or if the Simulink software
detects changes in known dependencies.
These configuration settings can result
in unnecessary regeneration of the code,
resulting in changing only the date of
the file and slowing down the build
process when using model references. (See
DO-331, Section MB.6.3.1.b – High-level
requirements are accurate and consistent
and DO-331, Section MB.6.3.2.b – Low-level
requirements are accurate and consistent.)

Set “Rebuild” on theModel Referencing pane of
the Configuration Parameters dialog box or set
the parameter UpdateModelReferenceTargets to
Never or If any changes detected.

The diagnostic that detects whether a
target needs to be rebuilt is set to None or
Warn if targets require rebuild. For
safety-related applications, an error should
alert model developers that the parent
and referenced models are inconsistent.
This diagnostic parameter is available
only if Rebuild is set to Never. (See
DO-331, Section MB.6.3.1.b – High-level
requirements are accurate and consistent

Set “Never rebuild diagnostic” on the Model
Referencing pane of the Configuration
Parameters dialog box or set the parameter
CheckModelReferenceTargetMessage to error.

3-46

DO-178C/DO-331 Checks

Condition Recommended Action

and DO-331, Section MB.6.3.2.b – Low-level
requirements are accurate and consistent.)

The ability to pass scalar root input by
value is on. This capability should be off
because scalar values can change during a
time step and result in unpredictable data.
(See DO-331, Section MB.6.3.3.b – Software
architecture is consistent.)

Set “Pass fixed-size scalar root inputs by
value for code generation” on the Model
Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferencePassRootInputsByReference to
off.

The model is configured to minimize
algebraic loop occurrences. This
configuration is incompatible with
the recommended setting of Single
output/update function for embedded
systems code. (See DO-331, Section
MB.6.3.3.b – Software architecture is
consistent.)

Set “Minimize algebraic loop occurrences” on the
Model Referencing pane of the Configuration
Parameters dialog box or set the parameter
ModelReferenceMinAlgLoopOccurrences to off.

Action Results
Clicking Modify Settings configures model referencing settings that can
impact safety.

Subchecks depend on the results of the subchecks noted with D in the results
table in the Model Advisor window.

See Also

• “Analyze Model Dependencies” in the Simulink documentation

• “Model Referencing Pane” in the Simulink graphical user interface
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-47

http://www.rtca.org/

3 Model Advisor Checks

Check safety-related code generation settings
Check model configuration for code generation settings that can impact safety.

Description
This check verifies that model configuration parameters for code generation
are set optimally for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The option to include comments in the
generated code is cleared. Comments
provide good traceability between the
code and the model. (See DO-331, Section
MB.6.3.4.e – Source code is traceable to
low-level requirements.)

Select Include comments on the Code
Generation > Comments pane of the
Configuration Parameters dialog box or set the
parameter GenerateComments to on.

The option to include comments that
describe the code for blocks is cleared.
Comments provide good traceability
between the code and the model. (See
DO-331, Section MB.6.3.4.e – Source code is
traceable to low-level requirements.)

Select Simulink block / Stateflow
object comments on the Code
Generation > Comments pane of the
Configuration Parameters dialog box or set the
parameter SimulinkBlockComments to on.

The option to include comments that
describe the code for blocks eliminated from
a model is cleared. Comments provide good
traceability between the code and the model.
(See DO-331, Section MB.6.3.4.e – Source
code is traceable to low-level requirements.)

Select Show eliminated blocks on the
Code Generation > Comments pane of the
Configuration Parameters dialog box or set the
parameter ShowEliminatedStatement to on.

3-48

DO-178C/DO-331 Checks

Condition Recommended Action

The option to include the names of
parameter variables and source blocks as
comments in the model parameter structure
declaration in model_prm.h is cleared.
Comments provide good traceability
between the code and the model. (See
DO-331, Section MB.6.3.4.e – Source code is
traceable to low-level requirements.)

Select Verbose comments for
SimulinkGlobal storage class on the
Code Generation > Comments pane of the
Configuration Parameters dialog box or set the
parameter ForceParamTrailComments to on.

The option to include requirement
descriptions assigned to Simulink blocks as
comments is cleared. Comments provide
good traceability between the code and the
model. (See DO-331, Section MB.6.3.4.e
– Source code is traceable to low-level
requirements.)

Select Requirements in block comments on
the Code Generation > Comments pane of the
Configuration Parameters dialog box or set the
parameter ReqsInCode to on.

The option to generate nonfinite data and
operations is selected. Support for nonfinite
numbers is inappropriate for real-time
embedded systems. (See DO-331, Section
MB.6.3.1.c – High-level requirements
are compatible with target computer and
DO-331, Section MB.6.3.2.c – Low-level
requirements are compatible with target
computer.)

Clear Support: non-finite numbers on the
Code Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportNonFinite to off.

The option to generate and maintain integer
counters for absolute and elapsed time
is selected. Support for absolute time is
inappropriate for real-time safety-related
systems. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Clear Support: absolute time on the
Code Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportAbsoluteTime to off.

3-49

3 Model Advisor Checks

Condition Recommended Action

The option to generate code for blocks that
use continuous time is selected. Support
for continuous time is inappropriate for
real-time safety-related systems. (See
DO-331, Section MB.6.3.1.c – High-level
requirements are compatible with target
computer and DO-331, Section MB.6.3.2.c –
Low-level requirements are compatible with
target computer.)

Clear Support: continuous time on the
Code Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportContinuousTime to off.

The option to generate code for noninlined
S-functions is selected. This option requires
support of nonfinite numbers, which is
inappropriate for real-time safety-related
systems. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Clear Support: non-inlined S-functions on
the Code Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter SupportNonInlinedSFcns to off.

The option to generate model function
calls compatible with the main program
module of the pre-R2012a GRT target is
selected. This option is inappropriate for
real-time safety-related systems. (See
DO-331, Section MB.6.3.1.c – High-level
requirements are compatible with target
computer and DO-331, Section MB.6.3.2.c –
Low-level requirements are compatible with
target computer.)

Clear Classic call interface on the Code
Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter GRTInterface to off.

3-50

DO-178C/DO-331 Checks

Condition Recommended Action

The option to generate the model_update
function is cleared. Having a single call to
the output and update functions simplifies
the interface to the real-time operating
system (RTOS) and simplifies verification of
the generated code. (See DO-331, Section
MB.6.3.1.c – High-level requirements
are compatible with target computer and
DO-331, Section MB.6.3.2.c – Low-level
requirements are compatible with target
computer.)

Select Single output/update function on the
Code Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter CombineOutputUpdateFcns to on.

The option to generate the model_terminate
function is selected. This function
deallocates dynamic memory, which is
unsuitable for real-time safety-related
systems. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Clear Terminate function required on the
Code Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter IncludeMdlTerminateFcn to off.

The option to log or monitor error status
is cleared. If you do not select this option,
the Simulink Coder product generates
extra code that might not be reachable for
testing. (See DO-331, Section MB.6.3.1.c
– High-level requirements are compatible
with target computer and DO-331, Section
MB.6.3.2.c – Low-level requirements are
compatible with target computer.)

Select Suppress error status in real-time
model data structure on the Code
Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter SuppressErrorStatus to on.

3-51

3 Model Advisor Checks

Condition Recommended Action

MAT-file logging is selected. This option
adds extra code for logging test points
to a MAT-file, which is not supported by
embedded targets. Use this option only
in test harnesses. (See DO-331, Section
MB.6.3.1.c – High-level requirements
are compatible with target computer and
DO-331, Section MB.6.3.2.c – Low-level
requirements are compatible with target
computer.)

Clear MAT-file logging on the Code
Generation > Interface pane of the
Configuration Parameters dialog box or set the
parameter MatFileLogging to off.

The option that specifies the style for
parenthesis usage is set to Minimum (Rely
on C/C++ operators precedence) or to
Nominal (Optimize for readability).
For safety-related applications, explicitly
specify precedence with parentheses. (See
DO-331, Section MB.6.3.1.c – High-level
requirements are compatible with target
computer, DO-331, Section MB.6.3.2.c –
Low-level requirements are compatible with
target computer, and MISRA-C:2004, Rule
12.1.)

Set Parenthesis level on the Code
Generation > Code pane of the Configuration
Parameters dialog box or set the parameter
ParenthesesLevel to Maximum (Specify
precedence with parentheses).

The option that specifies whether to
preserve operand order is cleared. This
option increases the traceability of the
generated code. (See DO-331, Section
MB.6.3.4.e – Source code is traceable to
low-level requirements.)

Select Preserve operand order in expression
on the Code Generation > Code pane of the
Configuration Parameters dialog box or set the
parameter PreserveExpressionOrder to on.

The option that specifies whether to preserve
empty primary condition expressions in if
statements is cleared. This option increases
the traceability of the generated code. (See
DO-331, Section MB.6.3.4.e – Source code is
traceable to low-level requirements.)

Select Preserve condition expression in if
statement on the Code Generation > Code
pane of the Configuration Parameters dialog box
or set the parameter PreserveIfCondition to on.

3-52

DO-178C/DO-331 Checks

Condition Recommended Action

The option that specifies whether to
generate preprocessor conditional directives
is set to generate code for nonactive variants.
This might result in generating code that
does not trace to the active variant of a
variant model block or a variant subsystem.
(See DO-331 Section MB.6.3.4.e — Source
code is traceable to low-level requirements.)

Set “Generate preprocessor conditionals” on
the Code Generation > Interface pane of the
Configuration Parameters dialog box to Disable
All.

The minimum number of characters
specified for generating name mangling
strings is less than four. You can use this
option to minimize the likelihood that
parameter and signal names will change
during code generation when the model
changes. Use of this option assists with
minimizing code differences between file
versions, decreasing the effort to perform
code reviews. (See DO-331, Section
MB.6.3.4.e – Source code is traceable to
low-level requirements.)

Set Minimum mangle length on the
Code Generation > Symbols pane of the
Configuration Parameters dialog box or the
parameter MangleLength to a value of 4 or
greater.

Action Results
Clicking Modify Settings configures model code generation settings that
can impact safety.

Subchecks depend on the results of the subchecks noted with D in the results
table in the Model Advisor window.

See Also

• “Code Generation Pane: Comments”“Code Generation Pane: Comments”
in the Simulink Coder reference documentation

• “Code Generation Pane: Symbols” in the Simulink Coder reference
documentation

3-53

3 Model Advisor Checks

• “Code Generation Pane: Interface” in the Simulink Coder reference
documentation

• “Code Generation Pane: Code Style” in the Embedded Coder reference
documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-54

http://www.rtca.org/

DO-178C/DO-331 Checks

Check safety-related diagnostic settings for saving
Check model configuration for diagnostic settings that apply to saving model
files

Description
This check verifies that model configuration parameters are set optimally for
saving a model for a safety-related application.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The diagnostic that detects whether a model
contains disabled library links before the
model is saved is set to none or warning. If
this condition is undetected, incorrect code
might be generated.

Set Block diagram contains disabled library
links on the Diagnostics > Saving> pane of the
Configuration Parameters dialog box or set the
parameter SaveWithDisabledLinkMsg to error.

The diagnostic that detects whether a
model contains library links that are using
parameters not in a mask before the model
is saved is set to none or warning. If this
condition is undetected, incorrect code
might be generated.

Set Block diagram contains parameterized
library links on the Diagnostics
> Saving> pane of the Configuration
Parameters dialog box or set the parameter
SaveWithParameterizedLinkMsg to error.

Action Results
Clicking Modify Settings configures model diagnostic settings that apply
to saving a model file.

See Also

• DO-331, Section MB.6.3.3.b - Software architecture is consistent

• “Disable Links to Library Blocks” in the Simulink documentation

• “Identify disabled library links” in the Simulink documentation

3-55

3 Model Advisor Checks

• “Save a Model” in the Simulink documentation

• “Model Parameters” in the Simulink documentation

• “Diagnostics Pane: Saving” in the Simulink documentation

3-56

DO-178C/DO-331 Checks

Check for blocks that do not link to requirements
Check whether Simulink blocks and Stateflow objects link to a requirements
document.

Description
This check verifies whether Simulink blocks and Stateflow objects link to a
document containing engineering requirements for traceability.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks do not link to a requirements
document.

Link to requirements document. See
“Link to Requirements Document
Using Selection-Based Linking”.

Capabilities and Limitations

• You can run this check on your library models.

• When you run this check, the Model Advisor does not follow library links
or look under masks.

Tip
Run this check from the top model or subsystem that you want to check.

See Also

• DO-331, Section MB.6.3.1.f - High-level requirements trace to system
requirements

• DO-331, Section MB.6.3.2.f - Low-level requirements trace to high-level
requirements

• “Requirements Traceability”

3-57

3 Model Advisor Checks

Check usage of Math blocks
Check whether math operators require nonfinite number support.

Description
This check verifies that Math Function blocks do not use math operations that
need nonfinite number support with real-time embedded targets.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Math Function blocks using log
(natural logarithm), log10 (base 10
logarithm), and rem (Remainder)
operators that require nonfinite
number support.

When using the Math Function block
with a log or log10 function, you
must protect the input to the block
in the model such that it is not less
than or equal to zero. Otherwise,
the output can produce a NaN or
-Inf and result in a run-time error
in the generated code.

When using the Math Function
block with a rem function, you must
protect the second input to the block
such that it is not equal to zero.
Otherwise the output can produce a
Inf or -Inf and result in a run-time
error in the generated code.

Capabilities and Limitations
You can run this check on your library models.

Tips
With embedded systems, you must take care when using blocks that could
produce nonfinite outputs such as NaN, Inf or -Inf. Your design must protect

3-58

DO-178C/DO-331 Checks

the inputs to these blocks in order to avoid run-time errors in the embedded
system.

See Also

• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate

• MISRA-C:2004, Rule 21.1

• Math Function block in the Simulink documentation

3-59

3 Model Advisor Checks

Check state machine type of Stateflow charts
Identify whether Stateflow charts are all Mealy or all Moore charts.

Description
Compares the state machine type of all Stateflow charts to the type that
you specify in the input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Common
Check whether charts use the same state machine type, and are all
Mealy or all Moore charts.

Mealy
Check whether all charts are Mealy charts.

Moore
Check whether all charts are Moore charts.

Results and Recommended Actions

Condition Recommended Action

The input parameter is set to Common
and charts in the model use either of
the following:

• Classic state machine types.

• Multiple state machine types.

For each chart, in the Chart
Properties dialog box, specify State
Machine Type to either Mealy or
Moore. Use the same state machine
type for all charts in the model.

The input parameter is set to Mealy
and charts in the model use other
state machine types.

For each chart, in the Chart
Properties dialog box, specify State
Machine Type to Mealy.

The input parameter is set to Moore
and charts in the model use other
state machine types.

For each chart, in the Chart
Properties dialog box, specify State
Machine Type to Moore.

3-60

DO-178C/DO-331 Checks

Capabilities and Limitations
You can run this check on your library models.

See Also

• DO-331, Section MB.6.3.1.b - High-level requirements are accurate and
consistent

• DO-331, Section MB.6.3.1.e - High-level requirements conform to standards

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and
consistent

• DO-331, Section MB.6.3.2.e - Low-level requirements conform to standards

• DO-331, Section MB.6.3.3.b - Software architecture is consistent

• DO-331, Section MB.6.3.3.e - Software architecture conform to standards

• “hisf_0001: Mealy and Moore semantics”

• “Overview of Mealy and Moore Machines”

• “Chart Properties”

• “Chart Architecture”

3-61

3 Model Advisor Checks

Check Stateflow charts for ordering of states and
transitions
Identify Stateflow charts that have User specified state/transition
execution order cleared.

Description
Identify Stateflow charts that have User specified state/transition
execution order cleared, and therefore do not use explicit ordering of
parallel states and transitions.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Stateflow charts have User
specified state/transition
execution order cleared.

For the specified charts, in the
Chart Properties dialog box, select
User specified state/transition
execution order.

Capabilities and Limitations
You can run this check on your library models.

Action Results
ClickingModify selects User specified state/transition execution order
for the specified charts.

See Also

• DO-331, Section MB.6.3.3.b - Software architecture is consistent

• DO-331, Section MB.6.3.3.e - Software architecture conform to standards

• “hisf_0002: User-specified state/transition execution order”

3-62

DO-178C/DO-331 Checks

“Transition Testing Order in Multilevel State Hierarchy” in the Stateflow
documentation.

• “Execution Order for Parallel States” in the Stateflow documentation.

• “Chart Properties”

• “Chart Architecture”

3-63

3 Model Advisor Checks

Check Stateflow debugging options
Identify whether Stateflow debugging options are cleared.

Description
Identify whether the following debugging options are cleared, which might
lead to unreachable code and indeterminate execution time:

• Enable debugging/animation

• Enable overflow detection (with debugging)

• Transition Conflict

• Data Range

• Detect Cycles

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Any of the following debugging
options are cleared:
• Enable debugging/animation

• Enable overflow detection
(with debugging)

• Transition Conflict

• Data Range

• Detect Cycles

Select the debugging options. In the
Configuration Parameters dialog
box, select:

• Simulation
Target > General > Enable
debugging/animation

• Simulation
Target > General > Enable
overflow detection (with
debugging)

In the Stateflow Debugging dialog
box, select:

• Transition Conflict

• Data Range

• Detect Cycles

3-64

DO-178C/DO-331 Checks

Action Results
Clicking Modify selects the specified debugging options.

See Also

• DO-331, Section MB.6.3.1.b - High-level requirements are accurate and
consistent

• DO-331, Section MB.6.3.1.e - High-level requirements conform to standards

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and
consistent

• DO-331, Section MB.6.3.2.e - Low-level requirements conform to standards

• “hisf_0011: Stateflow debugging settings”

• “Chart Properties”

• “Chart Architecture”

3-65

3 Model Advisor Checks

Check usage of lookup table blocks
Check for lookup table blocks that do not generate out-of-range checking code.

Description
This check verifies that the following blocks generate code to protect against
inputs that fall outside the range of valid breakpoint values:

• 1-D Lookup Table

• 2-D Lookup Table

• n-D Lookup Table

• Prelookup

This check also verifies that Interpolation Using Prelookup blocks generate
code to protect against inputs that fall outside the range of valid index values.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The lookup table block does not
generate out-of-range checking code.

Change the setting on the block
dialog box so that out-of-range
checking code is generated.

• For the 1-D Lookup Table,
2-D Lookup Table, n-D
Lookup Table, and Prelookup
blocks, clear the check box
for Remove protection
against out-of-range input
in generated code.

• For the Interpolation Using
Prelookup block, clear the check
box for Remove protection
against out-of-range index in
generated code.

3-66

DO-178C/DO-331 Checks

Action Results
Clicking Modify verifies that lookup table blocks are set to generate
out-of-range checking code.

Capabilities and Limitations
You can run this check on your library models.

See Also

• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate

• n-D Lookup Table block in the Simulink documentation

• Prelookup block in the Simulink documentation

• Interpolation Using Prelookup block in the Simulink documentation

3-67

3 Model Advisor Checks

Check MATLAB Code Analyzer messages
Check MATLAB Functions for %#codegen directive, MATLAB Code Analyzer
messages, and justification message IDs.

Description
Verifies %#codegen directive, MATLAB Code Analyzer messages, and
justification message IDs for:

• MATLAB code in MATLAB Function blocks

• MATLAB functions defined in Stateflow charts

• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

For MATLAB code in MATLAB
Function blocks, either of the
following:

• Code lines are not justified with a
%#ok comment.

• Codes lines justified with %#ok do
not specify a message id.

• Implement MATLAB Code
Analyzer recommendations.

• Justify not following MATLAB
Code Analyzer recommendations
with a %#ok comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

For MATLAB functions defined
in Stateflow charts, either of the
following:

• Code lines are not justified with a
%#ok comment.

• Codes lines justified with %#ok do
not specify a message id.

• Implement MATLAB Code
Analyzer recommendations.

• Justify not following MATLAB
Code Analyzer recommendations
with a %#ok comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

For called MATLAB functions: • Insert %#codegen directive in the
MATLAB code.

3-68

DO-178C/DO-331 Checks

Condition Recommended Action

• Code does not have the %#codegen
directive.

• Code lines are not justified with a
%#ok comment.

• Codes lines justified with %#ok do
not specify a message id.

• Implement MATLAB Code
Analyzer recommendations.

• Justify not following MATLAB
Code Analyzer recommendations
with a %#ok comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

See Also

• DO-331, Sections MB.6.3.1.b and MB.6.3.2.b - Accuracy and consistency

• “Check Code for Errors and Warnings”

• “himl_0004: MATLAB Code Analyzer recommendations for code
generation”

3-69

3 Model Advisor Checks

Check MATLAB code for global variables
Check for global variables in MATLAB code.

Description
Verifies that global variables are not used in any of the following:

• MATLAB code in MATLAB Function blocks

• MATLAB functions defined in Stateflow charts

• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Global variables are used in one or
more of the following:
• MATLAB code in MATLAB
Function blocks

• MATLAB functions defined in
Stateflow charts

• Called MATLAB functions

Replace global variables with
signal lines, function arguments, or
persistent data.

See Also

• DO-331, Sections MB.6.3.3.b ‘Consistency’

• “himl_0005: Usage of global variables in MATLAB functions”

3-70

DO-178C/DO-331 Checks

Check for inconsistent vector indexing methods
Identify blocks with inconsistent indexing method.

Description
Using inconsistent block indexing methods can result in modeling errors. You
should use a consistent vector indexing method for all blocks. This check
identifies blocks with inconsistent indexing methods. The indexing methods
are zero-based, one-based or user-specified.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
blocks with inconsistent indexing
methods. The indexing methods
are zero-based, one-based or
user-specified.

Modify the model to use a single
consistent indexing method.

Capabilities and Limitations
You can run this check on your library models.

See Also

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurateand
consistent

• “hisl_0021: Consistent vector indexing method”

3-71

3 Model Advisor Checks

Check for MATLAB Function block interfaces with
inherited properties
Identify MATLAB Function blocks that have inputs, outputs or parameters
with inherited complexity or data type properties.

Description
The check identifies MATLAB Function blocks with inherited complexity or
data type properties. A results table provides links to MATLAB Function
blocks that do not pass the check, along with conditions triggering the
warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

MATLAB Function blocks have
inherited interfaces.

Explicitly define complexity and data
type properties for inports, outports,
and parameters of MATLAB
Function block identified in the
results.

If applicable, using the “MATLAB
Function Block Editor”, make the
following modifications in the “Ports
and Data Manager”:

• Change Complexity from
Inherited to On or Off.

• Change Type from Inherit:
Same as Simulink to an explicit
type.

In the results table, Compiled
Value provides suggestions for
the actual values after the model
compiles. If a MATLAB Function

3-72

DO-178C/DO-331 Checks

Condition Recommended Action

block is defined within a library,
explicitly define the interface in the
library rather than in the referencing
model. If your model has multiple
instances of MATLAB Function
blocks defined in a library block,
and the instances have different
interface properties, consider using
multiple library blocks.

See Also

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurateand
consistent

• “himl_0002: Strong data typing at MATLAB function boundaries”

3-73

3 Model Advisor Checks

Check MATLAB Function block metrics
Display complexity and code metrics for MATLAB Function blocks and
external MATLAB functions. Report metric violations.

Description
This check provides complexity and code metrics for MATLAB Function
blocks and external MATLAB functions. The check additionally reports
metric violations.

A results table provides links to MATLAB Function blocks and external
MATLAB functions that violate the complexity input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Maximum effective lines of code per function
Provide the maximum effective lines of code per function. Effective
lines do not include empty lines, comment lines, or lines with a function
end keyword.

Minimum density of comments
Provide minimum density of comments. Density is ratio of comment
lines to total lines of code.

Maximum cyclomatic complexity per function
Provide maximum cyclomatic complexity per function. Cyclomatic
complexity is the number of linearly independent paths through the
source code.

3-74

DO-178C/DO-331 Checks

Results and Recommended Actions

Condition Recommended Action

MATLAB Function blocks or
external MATLAB functions violate
the complexity input parameters.

For the MATLAB Function block or
external MATLAB function:

• If effective lines of code is too
high, further divide the MATLAB
function.

• If comment density is too low, add
comment lines.

• If cyclomatic complexity per
function is too high, further divide
the MATLAB function.

See Also

• DO-331, Sections MB.6.3.1.e - High-level requirements conform to
standards

• DO-331, Sections MB.6.3.2.e - Low-level requirements conform to standards

• “himl_0003: Limitation of MATLAB function complexity”

3-75

3 Model Advisor Checks

Check for blocks not recommended for C/C++
production code deployment
Identify blocks not supported by code generation or not recommended for
C/C++ production code deployment.

Description
This check partially identifies model constructs that are not recommended
for C/C++ production code generation as identified in the Simulink Block
Support tables for Simulink Coder and Embedded Coder. If you are using
blocks with support notes for code generation, review the information and
follow the given advice.

Available with Simulink Verification and Validation and Embedded Coder.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
blocks that should not be used for
production code deployment.

Consider replacing the blocks listed
in the results. Click an element
from the list of questionable items to
locate condition.

Capabilities and Limitations
You can run this check on your library models.

See Also

• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and
consistent

• MISRA-C: 2004, Rule 5.6

• “Supported Products and Block Usage”

3-76

DO-178C/DO-331 Checks

Check Stateflow charts for uniquely defined data
objects
Identify Stateflow charts that include data objects that are not uniquely
defined.

Description
This check searches your model for local data in Stateflow charts that is not
uniquely defined.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The Stateflow chart contains a data
object identifier defined in two or
more scopes.

For the identified chart, do one of
the following:

• Create a unique data object
identifier within each of the
scopes.

• Create a unique data object
identifier within the chart, at the
parent level.

Capabilities and Limitations
You can run this check on your library models.

See Also
• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and
consistent

• MISRA-C: 2004, Rule 5.6

• “hisl_0061: Unique identifiers for clarity”

3-77

3 Model Advisor Checks

Check usage of Math Operations blocks
Identify usage of Math Operation blocks that might impact safety.

Description
This check inspects the usage of the following blocks:

• Abs

• Gain

• Math Function

- Natural logarithm

- Common (base 10) logarithm

- Remainder after division

- Reciprocal

• Assignment

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
an Absolute Value block that is
operating on one of the following:

• A boolean or an unsigned input
data type. This condition results
in unreachable simulation
pathways through the model and
might result in unreachable code

• A signed integer value with the
Saturate on integer overflow
check box not selected. For signed
data types, the absolute value
of the most negative value is

If the identified Absolute Value block
is operating on a boolean or unsigned
data type, do one of the following:

• Change the input of the Absolute
Value block to a signed input type.

• Remove the Absolute Value block
from the model.

If the identified Absolute Value
block is operating on a signed data
type, in the Block Parameters >

3-78

DO-178C/DO-331 Checks

Condition Recommended Action

problematic because it is not
representable by the data type.
This condition results in an
overflow in the generated code.

Signal Attributes dialog box, select
Saturate on integer overflow.

The model or subsystem contains
Gain blocks with a of value 1.

If you are using Gain blocks as
buffers, consider replacing them
with Signal Conversion blocks.

The model or subsystem contains
Math Function - Natural logarithm
(log) blocks that might result in
non-finite output signals. Non-finite
signals are not supported in
real-time embedded systems.

When using the Math Function
block with a log function, protect
the input to the block from being less
than or equal to zero. Otherwise,
the output can produce a NaN or
-Inf and result in a run-time error
in the generated code.

The model or subsystem contains
Math Function - Common (base
10)(base 10 logarithm) blocks
that might result in non-finite output
signals. Non-finite signals are not
supported in real-time embedded
systems.

When using the Math Function block
with a log10 function, protect the
input to the block from being less
than or equal to zero. Otherwise,
the output can produce a NaN or
-Inf and result in a run-time error
in the generated code.

The model or subsystem contains
Math Function - Remainder after
division(rem) blocks that might
result in non-finite output signals.
Non-finite signals are not supported
in real-time embedded systems.

When using the Math Function block
with a rem function, protect the
second input to the block from being
equal to zero. Otherwise the output
can produce a Inf or -Inf and result
in a run-time error in the generated
code.

3-79

3 Model Advisor Checks

Condition Recommended Action

The model or subsystem contains
Math Function - Reciprocal
(reciprocal) blocks that might
result in non-finite output signals.
Non-finite signals are not supported
in real-time embedded systems.

When using the Math Function block
with a reciprocal function, protect
the input to the block from being
equal to zero. Otherwise the output
can produce a Inf or -Inf and result
in a run-time error in the generated
code.

The model or subsystem might
contain Assignment blocks with
incomplete array initialization that
do not have block parameter Action
if any output element is not
assigned set to Error.

When using the Assignment
block with incompleted array
initialization, set block parameter
Action if any output element is
not assigned to Error.

See Also
• DO-331 Section MB.6.3.1.d – High-level requirements are verifiable

• DO-331 Section MB.6.3.2.d – Low-level requirements are verifiable

• MISRA-C:2004, Rule 14.1

• MISRA-C:2004, Rule 21.1

• “hisl_0001: Usage of Abs block”

• “hisl_0002: Usage of Math Function blocks (rem and reciprocal)”

• “hisl_0004: Usage of Math Function blocks (natural logarithm and base 10
logarithm)”

• “hisl_0029: Usage of Assignment blocks”

3-80

DO-178C/DO-331 Checks

Check usage of Signal Routing blocks
Identify usage of Signal Routing blocks that might impact safety.

Description
This check identifies model or subsystem Switch blocks that might
generate code with inequality operations (~=) in expressions that contain a
floating-point variable or constant.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a
Switch block that might generate
code with inequality operations
(~=) in expressions where at
least one side of the expression
contains a floating-point variable or
constant. The Switch block might
cause floating-point inequality
comparisons in the generated code.

For the identified block, do one of
the following:

• For the control input block,
change the Data type parameter
setting.

• Change the Switch block
Criteria for passing first input
parameter setting. This might
change the algorithm.

See Also
• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate

• MISRA-C:2004, Rule 13.3

3-81

3 Model Advisor Checks

Check usage of Logic and Bit Operations blocks
Identify usage of Logical Operator and Bit Operations blocks that might
impact safety.

Description
This check inspects the usage of:

• Blocks that compute relational operators, including Relational Operator,
Compare To Constant, Compare To Zero, and Detect Change blocks

• Logical Operator blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
a block computing a relational
operator that is operating on
different data types. The condition
can lead to unpredictable results in
the generated code.

On the Block Parameters >
Signal Attributes pane, set the
Output data type to boolean for
the specified blocks.

The model or subsystem contains
a block computing a relational
operator that uses the == or ~=
operator to compare floating-point
signals. The use of these operators on
floating-point signals is unreliable
and unpredictable because of
floating-point precision issues.
These operators can lead to
unpredictable results in the
generated code.

For the identified block, do one of
the following:

• Change the signal data type.

• Rework the model to eliminate
using == or ~= operators on
floating-point signals.

The model or subsystem contains
a Logical Operator block that has
inputs or outputs that are not

• Modify the Logical Operator
block so that all inputs and
outputs are Boolean. On the

3-82

DO-178C/DO-331 Checks

Condition Recommended Action

Boolean inputs or outputs. The
block might result in floating-point
equality or inequality comparisons
in the generated code.

Block Parameters > Signal
Attributes pane, consider
selecting Require all inputs to
have the same data type and
setting Output data type to
boolean.

• In the Configuration Parameters
dialog box, on the Optimization
pane, consider selecting the
Implement logic signals as
boolean data (vs. double).

See Also
• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate

• MISRA-C:2004, Rule 13.3

• “hisl_0016: Usage of blocks that compute relational operators”

• “hisl_0017: Usage of blocks that compute relational operators (2)”

3-83

3 Model Advisor Checks

Check usage of Ports and Subsystems blocks
Identify usage of Ports and Subsystems blocks that might impact safety.

Description
This check inspects the usage of:

• For Iterator blocks

• While Iterator blocks

• If blocks

• Switch Case blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a
For Iterator block that has variable
iterations. This condition can lead
to unpredictable execution times or
infinite loops in the generated code.

For the identified For Iterator
blocks, do one of the following:

• Set the Iteration limit source
parameter to internal.

• If the Iteration limit source
parameter must be external, use
a Constant, Probe, or Width block
as the source.

• Clear the Set next i (iteration
variable) externally check box.

• Consider selecting the Show
iteration variable check box and
observe the iteration value during
simulation.

The model or subsystem contains
a While Iterator block that has
unlimited iterations. This condition

For the identified While Iterator
blocks:

3-84

DO-178C/DO-331 Checks

Condition Recommended Action

can lead to infinite loops in the
generated code. • Set the Maximum number of

iterations (-1 for unlimited)
parameter to a positive integer
value.

• Consider selecting the Show
iteration number port check
box and observe the iteration
value during simulation.

The model or subsystem contains
an If block with an If expression or
Elseif expressions that might cause
floating-point equality or inequality
comparisons in generated code.

Modify the expressions in the If block
to avoid floating-point equality or
inequality comparisons in generated
code.

The model or subsystem contains
an If block using Elseif expressions
without an Else condition.

In the If block Block Parameters
dialog box, select Show else
condition. Connect the resulting
Else output port to an If Action
Subsystem block.

The model or subsystem contains an
If block with output ports that do
not connect to If Action Subsystem
blocks.

Verify that output ports of the If
block connect to If Action Subsystem
blocks.

The model or subsystem contains an
Switch Case block without a default
case.

In the Switch Case block Block
Parameters dialog box, select
Show default case. Connect the
resulting default output port to a
Switch Case Action Subsystem block.

The model or subsystem contains a
Switch Case block with an output
port that does not connect to a Switch
Case Action Subsystem block.

Verify that output ports of the
Switch Case blocks connect to Switch
Case Action Subsystem blocks.

3-85

3 Model Advisor Checks

See Also
• DO-331, Section MB.6.3.3.b—Software architecture is consistent

• DO-331, Sections MB.6.3.1.g and MB.6.3.2.g - Algorithms are accurate

• DO-331, Section MB.6.3.1.e – High-level requirements conform to
standards

• DO-331, Section MB.6.3.2.e – Low-level requirements conform to standards

• MISRA-C:2004, Rule 13.6

• MISRA-C:2004, Rule 14.10

• MISRA-C:2004, Rule 15.3

• MISRA-C:2004, Rule 21.1

• “hisl_0010: Usage of If blocks and If Action Subsystem blocks”

• “hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks”

3-86

DO-178C/DO-331 Checks

Display model version information
Display model version information in your report.

Description
This check displays the following information for the current model:

• Version number

• Author

• Date

• Model checksum

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

See Also

• “Reports for Code Generation” in the Simulink Coder documentation

• Radio Technical Commission for Aeronautics (RTCA) for information on
the DO-178C Software Considerations in Airborne Systems and Equipment
Certification and related standards

3-87

http://www.rtca.org/

3 Model Advisor Checks

IEC 61508, ISO 26262, and EN 50128 Checks

In this section...

“IEC 61508, ISO 26262, and EN 50128 Checks Overview” on page 3-89

“Display model metrics and complexity report” on page 3-90

“Check for unconnected objects” on page 3-92

“Check for root Inports with missing properties” on page 3-93

“Check for MATLAB Function block interfaces with inherited properties”
on page 3-95

“Check MATLAB Function block metrics” on page 3-97

“Check for root Inports with missing range definitions” on page 3-99

“Check for root Outports with missing range definitions” on page 3-101

“Check for blocks not recommended for C/C++ production code deployment”
on page 3-103

“Check usage of Stateflow constructs” on page 3-104

“Check state machine type of Stateflow charts” on page 3-109

“Check for model objects that do not link to requirements” on page 3-111

“Check for inconsistent vector indexing methods” on page 3-113

“Check MATLAB Code Analyzer messages” on page 3-114

“Check MATLAB code for global variables” on page 3-116

“Check usage of Math Operations blocks” on page 3-117

“Check usage of Signal Routing blocks” on page 3-119

“Check usage of Logic and Bit Operations blocks” on page 3-120

“Check usage of Ports and Subsystems blocks” on page 3-122

“Display configuration management data” on page 3-125

3-88

IEC 61508, ISO 26262, and EN 50128 Checks

IEC 61508, ISO 26262, and EN 50128 Checks
Overview
IEC 61508, ISO 26262, and EN 50128 checks facilitate designing and
troubleshooting models, subsystems, and the corresponding generated code
for applications to comply with IEC 61508-3, ISO 26262-6, or EN 50128.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the IEC 61508, ISO 26262, or EN 50128
checks.

Tips
If your model uses model referencing, run the IEC 61508, ISO 26262, or EN
50128 checks on all referenced models before running them on the top-level
model.

See Also

• IEC 61508-3 Functional safety of electrical/electronic/programmable
electronic safety-related systems - Part 3: Software requirements

• ISO 26262-6 Road vehicles - Functional safety - Part 6: Product
development: Software level

• EN 50128 Railway applications - Communications, signalling and
processing systems - Software for railway control and protection systems

• Embedded Coder documentation:

- “IEC 61508 Standard”

- “ISO 26262 Standard”

- “EN 50128 Standard”

3-89

3 Model Advisor Checks

Display model metrics and complexity report
Display number of elements and name, level, and depth of subsystems for the
model or subsystem.

Description
The IEC 61508, ISO 26262, and EN 50128 standards recommend the usage of
size and complexity metrics to assess the software under development. This
check provides metrics information for the model. The provided information
can be used to inspect whether the size or complexity of the model or
subsystem exceeds given limits. The check displays:

• A block count for each Simulink block type contained in the given model.

• The maximum subsystem depth of the given model.

• A count of Stateflow constructs in the given model (if applicable).

• Name, level, and depth of the subsystems contained in the given model (if
applicable).

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

N/A This summary is provided for your
information. No action is required.

Capabilities and Limitations
You can run this check on your library models.

See Also

• IEC 61508-3, Table A.9 (5) - Software complexity metrics

• ISO 26262-6, Table 1 (1a) - Enforcement of low complexity, Table 4 (1a) -
Hierarchical structure of software components, Table 4 (1b) - Restricted
size of software components, and Table 4 (1c) - Restricted size of interfaces

3-90

IEC 61508, ISO 26262, and EN 50128 Checks

• EN 50128, Table A.12 (8) - Limited size and complexity of Functions,
Subroutines and Methods and (9) Limited number of subroutine parameters

• sldiagnostics in the Simulink documentation

• “Cyclomatic Complexity” in the Simulink Verification and Validation
documentation

3-91

3 Model Advisor Checks

Check for unconnected objects
Identify unconnected lines, input ports, and output ports in the model.

Description
Unconnected objects are likely to cause problems propagating signal
attributes such as data, type, sample time, and dimensions.

Ports connected to Ground or Terminator blocks pass this check.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

There are unconnected lines, input
ports, or output ports in the model
or subsystem.

• Double-click an element in the list
of unconnected items to locate the
item in the model diagram.

• Connect the objects identified in
the results.

Capabilities and Limitations
You can run this check on your library models.

See Also
• IEC 61508-3, Table A.3 (3) - Language subset

• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of
defensive implementation techniques

• EN 50128, Table A.4 (11) - Language Subset

• “Signal Basics”

3-92

IEC 61508, ISO 26262, and EN 50128 Checks

Check for root Inports with missing properties
Identify root model Inport blocks with missing or inherited sample times,
data types or port dimensions.

Description
Using root model Inport blocks that do not have defined sample time, data
types or port dimensions can lead to undesired simulation results. Simulink
back-propagates dimensions, sample times, and data types from downstream
blocks unless you explicitly assign these values. When you run the check,
a results table provides links to Inport blocks that do not pass, along with
conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Missing port dimension— Model
contains Inport blocks with inherited
port dimensions.

For the listed Inport blocks, specify
port dimensions.

Missing signal data type—Model
contains Inport blocks with inherited
data types.

For the listed Inport blocks, specify
data types.

Missing port sample time —
Model contains Inport blocks with
inherited sample times.

For the listed Inport blocks, specify
sample times. The sample times
for root Inports with bus type must
match the sample times specified at
the leaf elements of the bus object.

Tips
The following configuration passes this check:

• Inport blocks with inherited sample times in conjunction with the Periodic
sample time constraint menu set to Ensure sample time independent

3-93

3 Model Advisor Checks

See Also

• IEC 61508-3, Table B.9 (5) - Fully defined interface

• ISO 26262-4, Table 2 (2) - Precisely defined interfaces

• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation

• EN 50128, Table A.3 (19) - Fully Defined Interface

• “Data Types” in the Simulink documentation

• “Determine Output Signal Dimensions” in the Simulink documentation

• “Specify Sample Time” in the Simulink documentation

3-94

IEC 61508, ISO 26262, and EN 50128 Checks

Check for MATLAB Function block interfaces with
inherited properties
Identify MATLAB Function blocks that have inputs, outputs or parameters
with inherited complexity or data type properties.

Description
The check identifies MATLAB Function blocks with inherited complexity or
data type properties. A results table provides links to MATLAB Function
blocks that do not pass the check, along with conditions triggering the
warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

MATLAB Function blocks have
inherited interfaces.

Explicitly define complexity and data
type properties for inports, outports,
and parameters of MATLAB
Function block identified in the
results.

If applicable, using the “MATLAB
Function Block Editor”, make the
following modifications in the “Ports
and Data Manager”:

• Change Complexity from
Inherited to On or Off.

• Change Type from Inherit:
Same as Simulink to an explicit
type.

In the results table, Compiled
Value provides suggestions for
the actual values after the model
compiles. If a MATLAB Function

3-95

3 Model Advisor Checks

Condition Recommended Action

block is defined within a library,
explicitly define the interface in the
library rather than in the referencing
model. If your model has multiple
instances of MATLAB Function
blocks defined in a library block,
and the instances have different
interface properties, consider using
multiple library blocks.

See Also

• IEC 61508-3, Table B.9 (5) - Fully defined interface

• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation

• EN 50128, Table A.1 (11) - Software Interface Specifications

• “himl_0002: Strong data typing at MATLAB function boundaries”

3-96

IEC 61508, ISO 26262, and EN 50128 Checks

Check MATLAB Function block metrics
Display complexity and code metrics for MATLAB Function blocks and
external MATLAB functions. Report metric violations.

Description
The IEC 61508, ISO 26262, and EN 50128 standards recommend the usage of
size and complexity metrics to assess the software under development. This
check provides complexity and code metrics for MATLAB Function blocks and
external MATLAB functions. The check additionally reports metric violations.

A results table provides links to MATLAB Function blocks and external
MATLAB functions that violate the complexity input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Maximum effective lines of code per function
Provide the maximum effective lines of code per function. Effective
lines do not include empty lines, comment lines, or lines with a function
end keyword.

Minimum density of comments
Provide minimum density of comments. Density is ratio of comment
lines to total lines of code.

Maximum cyclomatic complexity per function
Provide maximum cyclomatic complexity per function. Cyclomatic
complexity is the number of linearly independent paths through the
source code.

3-97

3 Model Advisor Checks

Results and Recommended Actions

Condition Recommended Action

MATLAB Function blocks or
external MATLAB functions violate
the complexity input parameters.

For the MATLAB Function block or
external MATLAB function:

• If effective lines of code is too
high, further divide the MATLAB
function.

• If comment density is too low, add
comment lines.

• If cyclomatic complexity per
function is too high, further divide
the MATLAB function.

See Also

• IEC 61508-3, Table B.9 (5) - Fully defined interface

• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation

• EN 50128, Table A.1(11) - Software Interface Specifications

• “himl_0003: Limitation of MATLAB function complexity”

3-98

IEC 61508, ISO 26262, and EN 50128 Checks

Check for root Inports with missing range definitions
Identify root level Inport blocks with missing or erroneous minimum or
maximum range values.

Description
The check identifies root level Inport blocks with missing or erroneous
minimum or maximum range values. To have a precise and static definition
of the interface range, you should specify the range at the Inport. A results
table provides links to Inport blocks that do not pass the check, along with
conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Missing range at Inport— Model
contains Inport blocks with numeric
data types that have missing range
parameters (minimum and/or
maximum).

Specify scalar minimum and
maximum parameters for the listed
Inport blocks.

Missing range(s) at bus object
— Bus objects defining the Inport
blocks have leaf elements with
missing ranges.

To specify the model interface
range, provide scalar minimum and
maximum parameters for the listed
leaf elements.

Range specified at Inport will be
ignored — Minimum or maximum
values at Inports are not supported
for bus data types. The values are
ignored during range checking.

To enable range checking, specify
minimum and maximum signal
values on the leaf elements of the
bus objects defining the data type.

To enable the use of minimum
and maximum values with bus
objects, set configuration parameter
Diagnostics > Connectivity > Buses > Mux

3-99

3 Model Advisor Checks

Condition Recommended Action

blocks used to create bus
signals to error.

No data type specified — Model
contains Inport blocks with no data
type specified.

Specify a supported data type.

Capabilities and Limitations
You can run this check on your library models.

See Also

• IEC 61508-3, Table B.9 (5) – Fully defined interface

• ISO 26262-6, Table 2 (2) – Precisely defined interfaces

• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3(19)
– Fully Defined Interface

• “hisl_0025: Design min/max specification of input interfaces”

3-100

IEC 61508, ISO 26262, and EN 50128 Checks

Check for root Outports with missing range
definitions
Identify root level Outport blocks with missing or erroneous minimum or
maximum range values.

Description
The check identifies root level Outport blocks with missing or erroneous
minimum or maximum range values. To have a precise and static definition
of the interface range, you should specify the range at the Outport. A results
table provides links to Outport blocks that do not pass the check, along with
conditions triggering the warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Missing range at Outport —
Model contains Outport blocks
with numeric data types that
have missing range parameters
(minimum and/or maximum).

Specify scalar minimum and
maximum parameters for the listed
Outport blocks.

Missing range(s) at bus object
— Bus objects defining the Outport
blocks have leaf elements with
missing ranges.

To specify the model interface
range, provide scalar minimum and
maximum parameters for the listed
leaf elements.

3-101

3 Model Advisor Checks

Condition Recommended Action

Range specified at Outport
will be ignored — Minimum or
maximum values at Outports are
not supported for bus data types.
The values are ignored during range
checking.

To enable range checking, specify
minimum and maximum signal
values on the leaf elements of the
bus objects defining the data type.

To enable the use of minimum
and maximum values with bus
objects, set configuration parameter
Diagnostics > Connectivity > Buses > Mux
blocks used to create bus
signals to error.

No bus data type specified —
Outport blocks have a bus signals
entering with no bus data type
specified.

Provide a bus object for the Outport
block data type.

Capabilities and Limitations
You can run this check on your library models.

See Also

• IEC 61508-3, Table B.9 (5) – Fully defined interface

• ISO 26262-6, Table 2 (2) - Precisely defined interfaces

• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3(19)
– Fully Defined Interface

• “hisl_0026: Design min/max specification of output interfaces”

3-102

IEC 61508, ISO 26262, and EN 50128 Checks

Check for blocks not recommended for C/C++
production code deployment
Identify blocks not supported by code generation or not recommended for
C/C++ production code deployment.

Description
This check partially identifies model constructs that are not recommended
for C/C++ production code generation as identified in the Simulink Block
Support tables for Simulink Coder and Embedded Coder. If you are using
blocks with support notes for code generation, review the information and
follow the given advice.

Available with Simulink Verification and Validation and Embedded Coder.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
blocks that should not be used for
production code deployment.

Consider replacing the blocks listed
in the results. Click an element
from the list of questionable items to
locate condition.

Capabilities and Limitations
You can run this check on your library models.

See Also

• IEC 61508-3, Table A.3 (3) - Language subset

• ISO 26262-6, Table 1 (1b) - Use of language subsets

• EN 50128, Table A.4 (11) - Language Subset

• “Supported Products and Block Usage”

3-103

3 Model Advisor Checks

Check usage of Stateflow constructs
Identify usage of Stateflow constructs that might impact safety.

Description
This check identifies instances of Stateflow software being used in a way that
can impact an application’s safety, including:

• Use of strong data typing

• Port name mismatches

• Scope of data objects and events

• Formatting of state action statements

• Ordering of states and transitions

• Unreachable code

• Indeterminate execution time

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart is not configured
for strong data typing on boundaries
between a Simulink model and the
Stateflow chart. See:

• “hisf_0009: Strong data typing
(Simulink and Stateflow
boundary)”

• IEC 61508-3, Table A.3 (2) -
Strongly typed programming
language

• ISO 26262-6, Table 1 (1c) -
Enforcement of strong typing

In the Chart properties dialog box,
select Use Strong Data Typing
with Simulink I/O for the Stateflow
chart. When you select this check
box, the Stateflow chart accepts
input signals of any data type
that Simulink models support,
provided that the type of the input
signal matches the type of the
corresponding Stateflow input data
object.

3-104

IEC 61508, ISO 26262, and EN 50128 Checks

Condition Recommended Action

• EN 50128, Table A.4 (8) - Strongly
Typed Programming Language

• MISRA-C:2004, Rules 10.1, 10.2,
10.3, and 10.4

Signals have names that differ
from those of their corresponding
Stateflow ports. See:

• IEC 61508-3, Table A.3 (3) -
Language subset

• ISO 26262-6, Table 1 (1b) - Use of
language subsets

• EN 50128, Table A.4 (11) -
Language Subset

• Check whether the ports are
connected and, if not, fix the
connections.

• Change the names of the signals
or the Stateflow ports so that the
names match.

Local data is not defined in the
Stateflow hierarchy at the chart
level or below. See:

• IEC 61508-3, Table A.3 (3) -
Language subset

• ISO 26262-6, Table 1 (1b) - Use of
language subsets

• EN 50128, Table A.4 (11) -
Language Subset

Define local data at the chart level
or below.

3-105

3 Model Advisor Checks

Condition Recommended Action

A new line is missing from a state
action after:

• An entry (en), during (du), or
exit (ex) statement

• The semicolon (;) at the end of an
assignment statement

See:

• IEC 61508-3, Table A.3 (3) -
Language subset

• ISO 26262-6, Table 1 (1b) - Use of
language subsets

• EN 50128, Table A.4 (11) -
Language Subset

Add missing new lines.

Stateflow charts have User
specified state/transition
execution order cleared. See:

• “hisf_0002: User-specified
state/transition execution order”

• IEC 61508-3, Table A.3 (3) -
Language subset

• ISO 26262-6, Table 1 (1b) - Use
of language subsets, Table 1 (1f)
- Use of unambiguous graphical
representation

• EN 50128, Table A.4 (11) -
Language Subset

For the specified charts, in the
Chart Properties dialog box, select
User specified state/transition
execution order.

3-106

IEC 61508, ISO 26262, and EN 50128 Checks

Condition Recommended Action

Any of the following debugging
options are cleared:
• Enable debugging/animation

• Enable overflow detection
(with debugging)

• Transition Conflict

• Data Range

• Detect Cycles

See:

• “hisf_0011: Stateflow debugging
settings”

• IEC 61508-3, Table A.7 (2) -
Simulation/modeling

• ISO 26262-6, Table 1 (1d) - Use
of defensive implementation
techniques

• EN 50128, Table A.3 (1) -
Defensive Programming, Table
A.11 (13) Simulation

Select the debugging options. In the
Configuration Parameters dialog
box, select:

• Simulation
Target > General > Enable
debugging/animation

• Simulation
Target > General > Enable
overflow detection (with
debugging)

In the Stateflow Debugging dialog
box, select:

• Transition Conflict

• Data Range

• Detect Cycles

The Stateflow chart contains a data
object identifier defined in two or
more scopes. See:

• “hisl_0061: Unique identifiers for
clarity”

• IEC 61508-3, Table A.3 (3) -
Language subset, Table A.4 (5) -
Design and coding standards

• ISO 26262-6, Table 1 (1b) - Use
of language subsets, Table 1
(1e) - Use of established design

For the identified chart, do one of
the following:
• Create a unique data object
identifier within each of the
scopes.

• Create a unique data object
identifier within the chart, at the
parent level.

3-107

3 Model Advisor Checks

Condition Recommended Action

principles, Table 1 (1h) - Use of
naming conventions

• EN 50128, Table A.4 (11) -
Language Subset, Table A.12 (1) -
Coding Standard, Table A.12 (2) -
Coding Style Guide

• MISRA-C:2004, Rule 5.6

Capabilities and Limitations
This check does not support charts that use MATLAB as the action language.

See Also
See the following topics in the Stateflow documentation:

• “Strong Data Typing with Simulink I/O”

• “Property Fields”

• “How Events Work in Stateflow Charts”

• “Add Data”

• “Label States”

• “Chart Properties”

• “Chart Architecture”

3-108

IEC 61508, ISO 26262, and EN 50128 Checks

Check state machine type of Stateflow charts
Identify whether Stateflow charts are all Mealy or all Moore charts.

Description
Compares the state machine type of all Stateflow charts to the type that
you specify in the input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Mealy or Moore
Check whether charts use the same state machine type, and are all
Mealy or all Moore charts.

Mealy
Check whether all charts are Mealy charts.

Moore
Check whether all charts are Moore charts.

Results and Recommended Actions

Condition Recommended Action

The input parameter is set to Mealy
or Moore and charts in the model
use either of the following:

• Classic state machine types.

• Multiple state machine types.

For each chart, in the Chart
Properties dialog box, specify State
Machine Type to either Mealy or
Moore. Use the same state machine
type for all charts in the model.

The input parameter is set to Mealy
and charts in the model use other
state machine types.

For each chart, in the Chart
Properties dialog box, specify State
Machine Type to Mealy.

The input parameter is set to Moore
and charts in the model use other
state machine types.

For each chart, in the Chart
Properties dialog box, specify State
Machine Type to Moore.

3-109

3 Model Advisor Checks

Capabilities and Limitations
You can run this check on your library models.

See Also

• IEC 61508-3,Table A.7 (2) - Simulation/modeling

• ISO 26262-6, Table 1 (1b) - Use of language subsets

• EN 50128, Table A.11 (3) - Simulation

• “hisf_0001: Mealy and Moore semantics”

• “Overview of Mealy and Moore Machines” in the Stateflow documentation.

• “Chart Properties”

• “Chart Architecture”

3-110

IEC 61508, ISO 26262, and EN 50128 Checks

Check for model objects that do not link to
requirements
Check whether Simulink blocks and Stateflow objects link to a requirements
document.

Description
This check verifies whether Simulink blocks and Stateflow objects link to a
document containing engineering requirements for traceability.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks do not link to a requirements
document.

Link to requirements document. See
“Link to Requirements Document
Using Selection-Based Linking”.

Capabilities and Limitations

• You can run this check on your library models.

• When you run this check, the Model Advisor does not follow library links
or look under masks.

Tip
Run this check from the top model or subsystem that you want to check.

See Also

• IEC 61508-3, Table A.1 (1) - Computer-aided specification tools, Table A.2
(8) - Computer-aided specification tools, Table A.8 (1) - Impact analysis

• ISO 26262-6, Table 8 (1a) - Documentation of the software unit design
in natural language

3-111

3 Model Advisor Checks

• EN 50128, Table A.3 (23) - Modeling supported by computer aided design
and specification tools, Table A.10 (1) - Impact Analysis

• “Requirements Traceability”

3-112

IEC 61508, ISO 26262, and EN 50128 Checks

Check for inconsistent vector indexing methods
Identify blocks with inconsistent indexing method.

Description
Using inconsistent block indexing methods can result in modeling errors. You
should use a consistent vector indexing method for all blocks. This check
identifies blocks with inconsistent indexing methods. The indexing methods
are zero-based, one-based or user-specified.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
blocks with inconsistent indexing
methods. The indexing methods
are zero-based, one-based or
user-specified.

Modify the model to use a single
consistent indexing method.

Capabilities and Limitations
You can run this check on your library models.

See Also

• IEC 61508–3, Table A.3 (3) - Language subset, Table A.4 (5) - Design and
coding standards

• ISO 26262-6, Table 1 (b) - Use of language subsets, Table 1 (f) - Use of
unambiguous graphical representation

• EN 50128, Table A.4 (11) - Language Subset, Table A.12 (1) - Coding
Standard

• “hisl_0021: Consistent vector indexing method”

3-113

3 Model Advisor Checks

Check MATLAB Code Analyzer messages
Check MATLAB Functions for %#codegen directive, MATLAB Code Analyzer
messages, and justification message IDs.

Description
Verifies %#codegen directive, MATLAB Code Analyzer messages, and
justification message IDs for:

• MATLAB code in MATLAB Function blocks

• MATLAB functions defined in Stateflow charts

• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

For MATLAB code in MATLAB
Function blocks, either of the
following:

• Code lines are not justified with a
%#ok comment.

• Codes lines justified with %#ok do
not specify a message id.

• Implement MATLAB Code
Analyzer recommendations.

• Justify not following MATLAB
Code Analyzer recommendations
with a %#ok comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

For MATLAB functions defined
in Stateflow charts, either of the
following:

• Code lines are not justified with a
%#ok comment.

• Codes lines justified with %#ok do
not specify a message id.

• Implement MATLAB Code
Analyzer recommendations.

• Justify not following MATLAB
Code Analyzer recommendations
with a %#ok comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

For called MATLAB functions: • Insert %#codegen directive in the
MATLAB code.

3-114

IEC 61508, ISO 26262, and EN 50128 Checks

Condition Recommended Action

• Code does not have the %#codegen
directive.

• Code lines are not justified with a
%#ok comment.

• Codes lines justified with %#ok do
not specify a message id.

• Implement MATLAB Code
Analyzer recommendations.

• Justify not following MATLAB
Code Analyzer recommendations
with a %#ok comment.

• Specify justified code lines with
a message id. For example,
%#ok<NOPRT>.

See Also

• IEC 61508-3, Table A.3 (3) – Language subset, IEC 61508-3, Table A.4 (3)
– Defensive programming

• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of
defensive implementation techniques

• EN 50128, Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive
Programming

• “Check Code for Errors and Warnings”

• “himl_0004: MATLAB Code Analyzer recommendations for code
generation”

3-115

3 Model Advisor Checks

Check MATLAB code for global variables
Check for global variables in MATLAB code.

Description
Verifies that global variables are not used in any of the following:

• MATLAB code in MATLAB Function blocks

• MATLAB functions defined in Stateflow charts

• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Global variables are used in one or
more of the following:
• MATLAB code in MATLAB
Function blocks

• MATLAB functions defined in
Stateflow charts

• Called MATLAB functions

Replace global variables with
signal lines, function arguments, or
persistent data.

See Also

• IEC 61508-3, Table A.3 (3) – Language subset

• ISO 26262-6, Table 1 (1b) - Use of language subsets

• EN 50128, Table A.4 (11) - Language Subset

• “himl_0005: Usage of global variables in MATLAB functions”

3-116

IEC 61508, ISO 26262, and EN 50128 Checks

Check usage of Math Operations blocks
Identify usage of Math Operation blocks that might impact safety.

Description
This check inspects the usage of the following blocks:

• Abs

• Assignment

• Gain

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
an Absolute Value block that is
operating on one of the following:

• A boolean or an unsigned input
data type. This condition results
in unreachable simulation
pathways through the model and
might result in unreachable code

• A signed integer value with the
Saturate on integer overflow
check box not selected. For signed
data types, the absolute value
of the most negative value is
problematic because it is not
representable by the data type.

If the identified Absolute Value block
is operating on a boolean or unsigned
data type, do one of the following:

• Change the input of the Absolute
Value block to a signed input type.

• Remove the Absolute Value block
from the model.

If the identified Absolute Value
block is operating on a signed data
type, in the Block Parameters >
Signal Attributes dialog box, select
Saturate on integer overflow.

3-117

3 Model Advisor Checks

Condition Recommended Action

This condition results in an
overflow in the generated code.

The model or subsystem contains
Gain blocks with a of value 1.

If you are using Gain blocks as
buffers, consider replacing them
with Signal Conversion blocks.

The model or subsystem might
contain Assignment blocks with
incomplete array initialization that
do not have block parameter Action
if any output element is not
assigned set to Error.

When using the Assignment
block with incompleted array
initialization, set block parameter
Action if any output element is
not assigned to Error.

See Also

• IEC 61508-3, Table A.3 (3) – Language subset, IEC 61508-3, Table A.4 (3) –
Defensive programming, Table B.8 (3) – Control Flow Analysis

• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of
defensive implementation techniques, Table 7 (1f) - Control flow analysis

• EN 50128, Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive
Programming, Table A.19 (3) - Control Flow Analysis

• MISRA-C:2004, Rule 14.1

• MISRA-C:2004, Rule 21.1

• “hisl_0001: Usage of Abs block”

• “hisl_0029: Usage of Assignment blocks”

3-118

IEC 61508, ISO 26262, and EN 50128 Checks

Check usage of Signal Routing blocks
Identify usage of Signal Routing blocks that might impact safety.

Description
This check identifies model or subsystem Switch blocks that might
generate code with inequality operations (~=) in expressions that contain a
floating-point variable or constant.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a
Switch block that might generate
code with inequality operations
(~=) in expressions where at
least one side of the expression
contains a floating-point variable or
constant. The Switch block might
cause floating-point inequality
comparisons in the generated code.

For the identified block, do one of
the following:

• For the control input block,
change the Data type parameter
setting.

• Change the Switch block
Criteria for passing first input
parameter setting. This might
change the algorithm.

See Also

• IEC 61508-3, Table A.3 (3) – Language subset, Table A.4 (3) – Defensive
programming

• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of
defensive implementation techniques

• EN 50128, Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive
Programming

• MISRA-C:2004, Rule 13.3

3-119

3 Model Advisor Checks

Check usage of Logic and Bit Operations blocks
Identify usage of Logical Operator and Bit Operations blocks that might
impact safety.

Description
This check inspects the usage of:

• Blocks that compute relational operators, including Relational Operator,
Compare To Constant, Compare To Zero, and Detect Change blocks

• Logical Operator blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains
a block computing a relational
operator that is operating on
different data types. The condition
can lead to unpredictable results in
the generated code.

On the Block Parameters >
Signal Attributes pane, set the
Output data type to boolean for
the specified blocks.

The model or subsystem contains
a block computing a relational
operator that uses the == or ~=
operator to compare floating-point
signals. The use of these operators on
floating-point signals is unreliable
and unpredictable because of
floating-point precision issues.
These operators can lead to
unpredictable results in the
generated code.

For the identified block, do one of
the following:

• Change the signal data type.

• Rework the model to eliminate
using == or ~= operators on
floating-point signals.

The model or subsystem contains
a Logical Operator block that has
inputs or outputs that are not

• Modify the Logical Operator
block so that the inputs and
outputs are Boolean. On the

3-120

IEC 61508, ISO 26262, and EN 50128 Checks

Condition Recommended Action

Boolean inputs or outputs. The
block might result in floating-point
equality or inequality comparisons
in the generated code.

Block Parameters > Signal
Attributes pane, consider
selecting Require all inputs to
have the same data type and
setting Output data type to
boolean.

• In the Configuration Parameters
dialog box, on the Optimization
pane, consider selecting the
Implement logic signals as
boolean data (vs. double).

See Also
• IEC 61508-3, Table A.3 (2) – Strongly typed programming language, Table
A.3 (3) – Language subset, Table A.4 (3) - Defensive programming

• ISO 26262-6, Table 1 (1c) - Enforcement of strong typing, Table 1 (1b) - Use
of language subsets

• EN 50128 - Table A.4 (8) - Strongly Typed Programming Language, Table
A.4 (11) - Language Subset, Table A.3 (1) - Defensive Programming

• MISRA-C:2004, Rule 13.3

• “hisl_0016: Usage of blocks that compute relational operators”

• “hisl_0017: Usage of blocks that compute relational operators (2)”

3-121

3 Model Advisor Checks

Check usage of Ports and Subsystems blocks
Identify usage of Ports and Subsystems blocks that might impact safety.

Description
This check inspects the usage of:

• For Iterator blocks

• While Iterator blocks

• If blocks

• Switch Case blocks

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model or subsystem contains a
For Iterator block that has variable
iterations. This condition can lead
to unpredictable execution times or
infinite loops in the generated code.

For the identified For Iterator
blocks, do one of the following:

• Set the Iteration limit source
parameter to internal.

• If the Iteration limit source
parameter must be external, use
a Constant, Probe, or Width block
as the source.

• Clear the Set next i (iteration
variable) externally check box.

• Consider selecting the Show
iteration variable check box and
observe the iteration value during
simulation.

The model or subsystem contains
a While Iterator block that has
unlimited iterations. This condition

For the identified While Iterator
blocks:

3-122

IEC 61508, ISO 26262, and EN 50128 Checks

Condition Recommended Action

can lead to infinite loops in the
generated code. • Set the Maximum number of

iterations (-1 for unlimited)
parameter to a positive integer
value.

• Consider selecting the Show
iteration number port check
box and observe the iteration
value during simulation.

The model or subsystem contains
an If block with an If expression or
Elseif expressions that might cause
floating-point equality or inequality
comparisons in generated code.

Modify the expressions in the If block
to avoid floating-point equality or
inequality comparisons in generated
code.

The model or subsystem contains
an If block using Elseif expressions
without an Else condition.

In the If block Block Parameters
dialog box, select Show else
condition. Connect the resulting
Else output port to an If Action
Subsystem block.

The model or subsystem contains an
If block with output ports that do
not connect to If Action Subsystem
blocks.

Verify that output ports of the If
block connect to If Action Subsystem
blocks.

The model or subsystem contains an
Switch Case block without a default
case.

In the Switch Case block Block
Parameters dialog box, select
Show default case. Connect the
resulting default output port to a
Switch Case Action Subsystem block.

The model or subsystem contains a
Switch Case block with an output
port that does not connect to a Switch
Case Action Subsystem block.

Verify that output ports of the
Switch Case blocks connect to Switch
Case Action Subsystem blocks.

3-123

3 Model Advisor Checks

See Also
• IEC 61508-3, Table A.3 (3) - Language subset, Table A.4 (3) - Defensive
programming

• ISO 26262-6, Table 1 (1b) - Use of language subsets, Table 1 (1d) - Use of
defensive implementation techniques

• EN 50128 - Table A.4 (11) - Language Subset, Table A.3 (1) - Defensive
Programming

• MISRA-C:2004, Rule 13.6, Rule 14.10, Rule 15.3, Rule 21.1

• “hisl_0010: Usage of If blocks and If Action Subsystem blocks”

• “hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks”

3-124

IEC 61508, ISO 26262, and EN 50128 Checks

Display configuration management data
Display model configuration and checksum information.

Description
This informer check displays the following information for the current model:

• Model version number

• Model author

• Date

• Model checksum

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Could not retrieve model version and
checksum information.

This summary is provided for your
information. No action is required.

See Also

• IEC 61508-3, Table A.8 (5) – Software configuration management

• ISO 26262-8, Clause 7.4.2

• EN 50128, Table A.9 (5) - Software Configuration Management

• “How Simulink Helps You Manage Model Versions” in the Simulink
documentation

• Model Change Log in the Simulink Report Generator™ documentation

• Simulink.BlockDiagram.getChecksum in the Simulink documentation

• Simulink.SubSystem.getChecksum in the Simulink documentation

3-125

3 Model Advisor Checks

MathWorks Automotive Advisory Board Checks

In this section...

“MathWorks Automotive Advisory Board Checks Overview” on page 3-128

“Check font formatting” on page 3-129

“Check Transition orientations in flowcharts” on page 3-131

“Check for nondefault block attributes” on page 3-132

“Check signal line labels” on page 3-133

“Check for propagated signal labels” on page 3-135

“Check default transition placement in Stateflow charts” on page 3-136

“Check return value assignments of graphical functions in Stateflow charts”
on page 3-137

“Check entry formatting in State blocks in Stateflow charts” on page 3-138

“Check usage of return values from a graphical function in Stateflow
charts” on page 3-139

“Check for pointers in Stateflow charts” on page 3-140

“Check for event broadcasts in Stateflow charts” on page 3-141

“Check transition actions in Stateflow charts” on page 3-142

“Check for MATLAB expressions in Stateflow charts” on page 3-143

“Check for indexing in blocks” on page 3-144

“Check file names” on page 3-146

“Check folder names” on page 3-147

“Check for prohibited blocks in discrete controllers” on page 3-148

“Check for prohibited sink blocks” on page 3-149

“Check positioning and configuration of ports” on page 3-150

“Check for matching port and signal names” on page 3-152

“Check whether block names appear below blocks” on page 3-153

“Check for mixing basic blocks and subsystems” on page 3-154

3-126

MathWorks® Automotive Advisory Board Checks

In this section...

“Check for unconnected ports and signal lines” on page 3-155

“Check position of Trigger and Enable blocks” on page 3-156

“Check usage of tunable parameters in blocks” on page 3-157

“Check Stateflow data objects with local scope” on page 3-158

“Check for Strong Data Typing with Simulink I/O” on page 3-159

“Check usage of exclusive and default states in state machines” on page
3-160

“Check Implement logic signals as Boolean data (vs. double)” on page 3-162

“Check model diagnostic parameters” on page 3-163

“Check the display attributes of block names” on page 3-166

“Check display for port blocks” on page 3-167

“Check subsystem names” on page 3-168

“Check port block names” on page 3-170

“Check character usage in signal labels” on page 3-171

“Check character usage in block names” on page 3-173

“Check Trigger and Enable block names” on page 3-175

“Check for Simulink diagrams using nonstandard display attributes” on
page 3-176

“Check MATLAB code for global variables” on page 3-178

“Check visibility of block port names” on page 3-179

“Check orientation of Subsystem blocks” on page 3-181

“Check usage of Relational Operator blocks” on page 3-182

“Check usage of Switch blocks” on page 3-183

“Check usage of buses and Mux blocks” on page 3-184

“Check for bitwise operations in Stateflow charts” on page 3-185

“Check for comparison operations in Stateflow charts” on page 3-187

3-127

3 Model Advisor Checks

In this section...

“Check for unary minus operations on unsigned integers in Stateflow
charts” on page 3-188

“Check for equality operations between floating-point expressions in
Stateflow charts” on page 3-189

“Check input and output settings of MATLAB Function blocks” on page
3-190

“Check MATLAB Function block metrics” on page 3-192

“Check for mismatches between names of Stateflow ports and associated
signals” on page 3-194

“Check scope of From and Goto blocks” on page 3-195

MathWorks Automotive Advisory Board Checks
Overview
MathWorks Automotive Advisory Board (MAAB) checks facilitate designing
and troubleshooting models from which code is generated for automotive
applications.

The Model Advisor performs a checkout of the Simulink Verification and
Validation license when you run the MAAB checks.

See Also

• “Consult the Model Advisor” in the Simulink documentation

• “Simulink Checks” in the Simulink reference documentation

• “Simulink Coder Checks” in the Simulink Coder documentation

• “MAAB Control Algorithm Modeling” guidelines

• The MathWorks Automotive Advisory Board on the MathWorks Web site,
which lists downloads for the latest version of Control Algorithm Modeling
Guidelines Using MATLAB, Simulink, and Stateflow

3-128

http://www.mathworks.com/industries/auto/maab.html

MathWorks® Automotive Advisory Board Checks

Check font formatting
Check for difference in font and font sizes.

Description
With the exception of free text annotations within a model, text elements, such
as block names, block annotations, and signal labels, must have the same font
style and font size. Select a font style and font size that is legible and portable
(convertible between platforms), such as Arial or Times New Roman 12 point.

Available with Simulink Verification and Validation.

Input Parameters

Font Name
Apply the specified font to all text elements. When you specify Common
(default), the check identifies different fonts used in your model.
Although you can specify other fonts, the fonts available from the
drop-down list are Arial, Courier New, Georgia, Times New Roman,
Arial Black, and Verdana.

Font Size
Apply the specified font size to all text elements. When you specify
Common (default), the check identifies different font sizes used in your
model. Although you can specify other font sizes, the font sizes available
from the drop-down list are 6, 8, 9, 10, 12, 14, 16.

Font Style
Apply the specified font style to all text elements. When you specify
Common (default), the check identifies different font styles used in your
model. The font styles available from the drop-down list are normal,
bold, italic, and bold italic.

3-129

3 Model Advisor Checks

Results and Recommended Actions

Condition Recommended Action

The fonts or font sizes for text
elements in the model are not
consistent or portable.

Specify values for the font
parameters and click Modify
all Fonts, or manually change the
fonts and font sizes of text elements
in the model such that they are
consistent and portable.

Capabilities and Limitations
You can run this check on your library models.

Action Results
ClickingModify all Fonts changes the font and font size of all text elements
in the model according to the values you specify in the input parameters.

For the input parameters, if you specify Common, clicking Modify all Fonts
changes the font and font sizes of all text elements in the model to the most
commonly used fonts, font sizes, or font styles.

See Also
MAAB guideline db_0043: Simulink font and font size

3-130

MathWorks® Automotive Advisory Board Checks

Check Transition orientations in flowcharts
Check transition orientations in flow charts.

Description
The following rules apply to transitions in flow charts:

• Draw transition conditions horizontally.

• Draw transitions with a condition action vertically.

Loop constructs are exceptions to these rules.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model includes a transition
with a condition that is not drawn
horizontally or a transition action
that is not drawn vertically.

Modify the model.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0132: Transitions in Flowcharts

3-131

3 Model Advisor Checks

Check for nondefault block attributes
Identify blocks that use nondefault block parameter values that are not
displayed in the model diagram.

Description
Model diagrams should display block parameters that have values other than
default values. One way of displaying this information is by using the Block
Annotation tab in the Block Properties dialog box.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Block parameters that have values
other than default values, and the
values are not in the model display.

In the Block Properties dialog, use
the Block Annotation tab to add
block parameter annotations.

Capabilities and Limitations
You can run this check on your library models.

Tip
If you use the add_block function with 'built-in/blocktype' as a source
block path name for Simulink built-in blocks, some default parameter values
of some blocks are different from the defaults that you get if you added those
blocks interactively using Simulink.

See Also

• MAAB guideline db_0140: Display of basic block parameters

• For a list of block parameter default values, see “Block-Specific Parameters”
in the Simulink documentation.

• add_block in the Simulink documentation

3-132

MathWorks® Automotive Advisory Board Checks

Check signal line labels
Check the labeling on signal lines.

Description
You should use a label to identify:

• Signals originating from the following blocks (the block icon exception
noted below applies to all blocks listed, except Inport, Bus Selector, Demux,
and Selector):

Bus Selector block (tool forces labeling)
Chart block (Stateflow)
Constant block
Data Store Read block
Demux block
From block
Inport block
Selector block
Subsystem block

Block Icon Exception If a signal label is visible in the display of the
icon for the originating block, you do not have to display a label for the
connected signal unless the signal label is required elsewhere due to a
rule for signal destinations.

• Signals connected to one of the following destination blocks (directly
or indirectly with a basic block that performs an operation that is not
transformative):

Bus Creator block
Chart block (Stateflow)
Data Store Write block
Goto block
Mux block
Outport block
Subsystem block

3-133

3 Model Advisor Checks

• Any signal of interest.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Signals coming from Bus Selector,
Chart, Constant, Data Store Read,
Demux, From, Inport, or Selector
blocks are not labeled.

Double-click the line that represents
the signal. After the text cursor
appears, enter a name and click
anywhere outside the label to exit
label editing mode.

Capabilities and Limitations
You can run this check on your library models.

See Also

• MAAB guideline na_0008: Display of labels on signals

• “Signal Labels” in the Simulink documentation

3-134

MathWorks® Automotive Advisory Board Checks

Check for propagated signal labels
Check for propagated labels on signal lines.

Description
You should propagate a signal label from its source rather than enter the
signal label explicitly (manually) if the signal originates from:

• An Inport block in a nested subsystem. However, if the nested subsystem
is a library subsystem, you can explicitly label the signal coming from the
Inport block to accommodate reuse of the library block.

• A basic block that performs a nontransformative operation.

• A Subsystem or Stateflow Chart block. However, if the connection
originates from the output of an instance of the library block, you can
explicitly label the signal to accommodate reuse of the library block.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The model includes signal labels that
were entered explicitly, but should
be propagated.

Use the open angle bracket (<)
character to mark signal labels
that should be propagated and
remove the labels that were entered
explicitly.

Capabilities and Limitations
You can run this check on your library models.

See Also

• MAAB guideline na_0009: Entry versus propagation of signal labels

• “Signal Labels” in the Simulink documentation

3-135

3 Model Advisor Checks

Check default transition placement in Stateflow
charts
Check default transition placement in Stateflow charts.

Description
In a Stateflow chart, you should connect the default transition at the top of
the state and place the destination state of the default transition above other
states in the hierarchy.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The default transition for a Stateflow
chart is not connected at the top of
the state.

Move the default transition to the
top of the Stateflow chart.

The destination state of a Stateflow
chart’s default transition is lower
than other states in the same
hierarchy.

Adjust the position of the default
transition’s destination state such
that the state is above other states
in the same hierarchy.

Capabilities and Limitations
You can run this check on your library models.

See Also

• MAAB guideline jc_0531: Placement of the default transition

• “Syntax for States and Transitions”

3-136

MathWorks® Automotive Advisory Board Checks

Check return value assignments of graphical
functions in Stateflow charts
Identify graphical functions with multiple assignments of return values in
Stateflow charts.

Description
The return value from a Stateflow graphical function must be set in only
one place.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The return value from a Stateflow
graphical function is assigned in
multiple places.

Modify the specified graphical
function so that its return value is
set in one place.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also

• MAAB guideline jc_0511: Setting the return value from a graphical function

• “When to Use Reusable Functions in Charts” in the Stateflow
documentation

3-137

3 Model Advisor Checks

Check entry formatting in State blocks in Stateflow
charts
Identify missing line breaks between entry action (en), during action (du), and
exit action (ex) entries in states. Identify missing line breaks after semicolons
(;) in statements.

Description
Start a new line after the entry, during, and exit entries, and after the
completion of a statement “;”.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

An entry (en) is not on a new line. Add a new line after the entry.

A during (du) is not on a new line. Add a new line after the during.

An exit (ex) is not on a new line. Add a new line after the exit.

Multiple statements found on one
line.

Add a new line after each statement.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also
MAAB guideline jc_0501: Format of entries in a State block

3-138

MathWorks® Automotive Advisory Board Checks

Check usage of return values from a graphical
function in Stateflow charts
Identify calls to graphical functions in conditional expressions.

Description
Do not use the return value of a graphical function in a comparison operation.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Conditional expressions contain calls
to graphical functions.

Assign return values of graphical
functions to intermediate variables.
Use these intermediate variables in
the specified conditional expressions.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also

• MAAB guideline jc_0521: Use of the return value from graphical functions

• “When to Use Reusable Functions in Charts” in the Stateflow
documentation

• “Reuse Logic Patterns Using Graphical Functions” in the Stateflow
documentation

3-139

3 Model Advisor Checks

Check for pointers in Stateflow charts
Identify pointer operations on custom code variables.

Description
Pointers to custom code variables are not allowed.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Custom code variables use pointer
operations.

Modify the specified chart to
remove the dependency on pointer
operations.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also
MAAB guideline jm_0011: Pointers in Stateflow

3-140

MathWorks® Automotive Advisory Board Checks

Check for event broadcasts in Stateflow charts
Identify undirected event broadcasts that might cause recursion during
simulation and generate inefficient code.

Description
Event broadcasts in Stateflow charts must be directed.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Event broadcasts are undirected. Rearchitect the diagram to use
directed event broadcasting. Use the
send syntax or qualified event names
to direct the event to a particular
state. Use multiple send statements
to direct an event to more than one
state.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also

• MAAB guideline jm_0012: Event broadcasts

• “Broadcast Events to Synchronize States” in the Stateflow documentation

3-141

3 Model Advisor Checks

Check transition actions in Stateflow charts
Identify missing line breaks between transition actions.

Description
For readability, start each transition action on a new line.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Multiple transition actions are on a
single line.

Verify that each transition action
begins on a new line.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also

• MAAB guideline db_0151: State machine patterns for transition actions

• “Syntax for States and Transitions”

3-142

MathWorks® Automotive Advisory Board Checks

Check for MATLAB expressions in Stateflow charts
Identify Stateflow objects that use MATLAB expressions that are not suitable
for code generation.

Description
Do not use MATLAB functions, instructions, and operators in Stateflow
objects.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Stateflow objects use MATLAB
expressions.

Replace MATLAB expressions in
Stateflow objects.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also

• MAAB guideline db_0127: MATLAB commands in Stateflow

• “Access Built-In MATLAB Functions and Workspace Data” in the Stateflow
documentation

3-143

3 Model Advisor Checks

Check for indexing in blocks
Check for blocks that do not use one-based indexing.

Description
Available with Simulink Verification and Validation.

One-based indexing ([1, 2, 3,...]) is used for the following:

Product Items

MATLAB • Workspace variables and structures

• Local variables of MATLAB functions

• Global variables

Simulink • Signal vectors and matrices

• Parameter vectors and matrices

• S-function input and output signal vectors
and matrices in MATLAB-code

• S-function parameter vectors and matrices
in MATLAB-code

• S-function local variables in MATLAB-code

Zero-based indexing ([0, 1, 2, ...]) is used for the following:

Product Items

Simulink • S-function input and output signal vectors
and matrices in C code

• S-function input parameters in C code

• S-function parameter vectors and matrices
in C code

• S-function local variables in C code

Stateflow • Input and output signal vectors and
matrices

3-144

MathWorks® Automotive Advisory Board Checks

Product Items

• Parameter vectors and matrices

• Local variables

• Variables and structures in custom C code

C code • Local variables and structures

• Global variables

Results and Recommended Actions

Condition Recommended Action

Blocks in your model are not
configured for one-based indexing.

Using block parameters, configure
all blocks for one-based indexing.

Capabilities and Limitations
You can run this check on your library models.

See Also
See MAAB guideline db_0112: Indexing

3-145

3 Model Advisor Checks

Check file names
Checks the names of all files residing in the same folder as the model

Description
A file name conforms to constraints.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The file name contains illegal
characters.

Rename the file. Allowed characters
are a–z, A–Z, 0–9. and underscore
(_).

The file name starts with a number. Rename the file.

The file name starts with an
underscore ("_").

Rename the file.

The file name ends with an
underscore ("_").

Rename the file.

The file extension contains one (or
more) underscores.

Change the file extension.

The file name has consecutive
underscores.

Rename the file.

The file name contains more than
one dot (".").

Rename the file.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline ar_0001: Filenames

3-146

MathWorks® Automotive Advisory Board Checks

Check folder names
Checks model directory and subdirectory names for invalid characters.

Description
A directory name conforms to constraints.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The directory name contains illegal
characters.

Rename the directory. Allowed
characters are a–z, A–Z, 0–9. and
underscore (_).

The directory name starts with a
number.

Rename the directory.

The directory name starts with an
underscore ("_").

Rename the directory.

The directory name ends with an
underscore ("_").

Rename the directory.

The directory name has consecutive
underscores.

Rename the directory.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline ar_0002: Directory names

3-147

3 Model Advisor Checks

Check for prohibited blocks in discrete controllers
Check for prohibited blocks in discrete controllers.

Description
You cannot include continuous blocks in controller models.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Continuous blocks — Derivative,
Integrator, State-Space, Transfer
Fcn, Transfer Delay, Variable Time
Delay, Variable Transport Delay,
and Zero-Pole — are not permitted
in models representing discrete
controllers.

Replace continuous blocks with the
equivalent blocks discretized in the
s-domain by using the Discretizing
library, as explained in “Discretize
Blocks from the Simulink Model” in
the Simulink documentation.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline jm_0001: Prohibited Simulink standard blocks inside
controllers

3-148

MathWorks® Automotive Advisory Board Checks

Check for prohibited sink blocks
Check for prohibited Simulink sink blocks.

Description
You must design controller models from discrete blocks. Sink blocks, such
as the Scope block, are not allowed.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Sink blocks are not permitted in
discrete controllers.

Remove sink blocks from the model.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline hd_0001: Prohibited Simulink sinks

3-149

3 Model Advisor Checks

Check positioning and configuration of ports
Check whether the model contains ports with invalid position and
configuration.

Description
In models, ports must comply with the following rules:

• Place Inport blocks on the left side of the diagram. Move the Inport block
right only to prevent signal crossings.

• Place Outport blocks on the right side of the diagram. Move the Outport
block left only to prevent signal crossings.

• Avoid using duplicate Inport blocks at the subsystem level if possible.

• Do not use duplicate Inport blocks at the root level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Inport blocks are too far to the right
and result in left-flowing signals.

Move the specified Inport blocks to
the left.

Outport blocks are too far to the left
and result in right-flowing signals.

Move the specified Output blocks to
the right.

Ports do not have the default
orientation.

Modify the model diagram such that
signal lines for output ports enter
the side of the block and signal lines
for input ports exit the right side of
the block.

Ports are duplicate Inport blocks. • If the duplicate Inport blocks are
in a subsystem, remove them
where possible.

• If the duplicate Inport blocks are
at the root level, remove them.

3-150

MathWorks® Automotive Advisory Board Checks

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0042: Port block in Simulink models

Available with Simulink Verification and Validation.

3-151

3 Model Advisor Checks

Check for matching port and signal names
Check for mismatches between names of ports and corresponding signals.

Description
Use matching names for ports and their corresponding signals.

Available with Simulink Verification and Validation.

Prerequisite
Prerequisite MAAB guidelines for this check are:

• db_0042: Port block in Simulink models

• na_0005: Port block name visibility in Simulink models

Results and Recommended Actions

Condition Recommended Action

Ports have names that differ from
their corresponding signals.

Change the port name or the signal
name to match the name for the
signal.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline jm_0010: Port block names in Simulink models

3-152

MathWorks® Automotive Advisory Board Checks

Check whether block names appear below blocks
Check whether block names appear below blocks.

Description
If shown, the name of the block should appear below the block.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks have names that do not
appear below the blocks.

Set the name of the block to appear
below the blocks.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0142: Position of block names

3-153

3 Model Advisor Checks

Check for mixing basic blocks and subsystems
Check for systems that mix primitive blocks and subsystems.

Description
You must design each level of a model with building blocks of the same type,
for example, only subsystems or only primitive (basic) blocks. If you mask
your subsystem and set MaskType to a non-empty string, the subsystem is
seen as a basic block.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

A level in the model includes both
subsystem blocks and primitive
blocks.

Move nonvirtual blocks into the
subsystem.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0143: Similar block types on the model levels

3-154

MathWorks® Automotive Advisory Board Checks

Check for unconnected ports and signal lines
Check whether model has unconnected input ports, output ports, or signal
lines.

Description
Unconnected inputs should be connected to ground blocks. Unconnected
outputs should be connected to terminator blocks.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks have unconnected inputs or
outputs.

Connect unconnected lines to blocks
specified by the design or to Ground
or Terminator blocks.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0081: Unconnected signals, block inputs and block
outputs

3-155

3 Model Advisor Checks

Check position of Trigger and Enable blocks
Check the position of Trigger and Enable blocks.

Description
Locate blocks that define subsystems as conditional or iterative at the top
of the subsystem diagram.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Trigger , Enable, and Action Port
blocks are not centered in the upper
third of the model diagram.

Move the Trigger, Enable, and
Action Port blocks to the upper third
of the model diagram.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0146: Triggered, enabled, conditional Subsystems

3-156

MathWorks® Automotive Advisory Board Checks

Check usage of tunable parameters in blocks
Check whether tunable parameters specify expressions, data type conversions,
or indexing operations.

Description
To make a parameter tunable, you must enter the basic block without the use
of MATLAB calculations or scripting. For example, omit:

• Expressions

• Data type conversions

• Selections of rows or columns

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Blocks have a tunable parameter
that specifies an expression,
data type conversion, or indexing
operation.

In each case, move the calculation
outside of the block, for example,
by performing the calculation with
a series of Simulink blocks, or
precompute the value as a new
variable.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0110: Tunable parameters in basic blocks

3-157

3 Model Advisor Checks

Check Stateflow data objects with local scope
Check whether Stateflow data objects with local scope are defined at the
chart level or below.

Description
You must define local data of a Stateflow block on the chart level or below in
the object hierarchy. You cannot define local variables on the machine level;
however, parameters and constants are allowed at the machine level.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Local data is not defined in the
Stateflow hierarchy at the chart
level or below.

Define local data at the chart level
or below.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0125: Scope of internal signals and local auxiliary
variables

3-158

MathWorks® Automotive Advisory Board Checks

Check for Strong Data Typing with Simulink I/O
Check whether labeled Stateflow and Simulink input and output signals
are strongly typed.

Description
Strong data typing between Stateflow and Simulink input and output signals
is required.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

A Stateflow chart does not use strong
data typing with Simulink.

Select theUse Strong Data Typing
with Simulink I/O check box for
the specified block.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline db_0122: Stateflow and Simulink interface signals and
parameters

3-159

3 Model Advisor Checks

Check usage of exclusive and default states in state
machines
Check states in state machines.

Description
In state machines:

• There must be at least two exclusive states.

• A state cannot have only one substate.

• The initial state of a hierarchical level with exclusive states is clearly
defined by a default transition.

Available with Simulink Verification and Validation.

Prerequisite
A prerequisite MAAB guideline for this check is db_0149: Flowchart patterns
for condition actions.

Results and Recommended Actions

Condition Recommended Action

A system is underspecified. Validate that the intended design
is represented in the Stateflow
diagram.

Chart has only one exclusive (OR)
state.

Make the state a parallel state, or
add another exclusive (OR) state.

Chart does not have a default state
defined.

Define a default state.

Chart has multiple default states
defined.

Define only one default state. Make
the others nondefault.

State has only one exclusive (OR)
substate.

Make the state a parallel state, or
add another exclusive (OR) state.

3-160

MathWorks® Automotive Advisory Board Checks

Condition Recommended Action

State does not have a default
substate defined.

Define a default substate.

State has multiple default substates
defined.

Define only one default substate,
make the others nondefault.

Capabilities and Limitations

• This check does not support charts that use MATLAB as the action
language.

• You can run this check on your library models.

See Also
MAAB guideline db_0137: States in state machines

3-161

3 Model Advisor Checks

Check Implement logic signals as Boolean data (vs.
double)
Check the optimization parameter for Boolean data types.

Description
Optimization for Boolean data types is required

Available with Simulink Verification and Validation.

Prerequisite
A prerequisite MAAB guideline for this check is na_0002: Appropriate
implementation of fundamental logical and numerical operations.

Results and Recommended Actions

Condition Recommended Action

Configuration setting for
Implement logic signals as
boolean data (vs. double) is not
set.

Select the Implement logic signals
as boolean data (vs. double) check
box in the Configuration Parameters
dialog box Optimization pane.

See Also
MAAB guideline jc_0011: Optimization parameters for Boolean data types

3-162

MathWorks® Automotive Advisory Board Checks

Check model diagnostic parameters
Check the model diagnostics configuration parameter settings.

Description
You should enable the following diagnostics:

Algebraic loop
Minimize algebraic loop
Inf or NaN block output
Duplicate data store names
Unconnected block input ports
Unconnected block output ports
Unconnected line
Unspecified bus object at root Outport block
Mux blocks used to create bus signals
Element name mismatch
Invalid function-call connection

Diagnostics not listed in the Results and Recommended Actions section below
can be set to any value.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Algebraic loop is set to none. Set Algebraic loop on the
Diagnostics > Solver pane of the
Configuration Parameters dialog box to error
or warning. Otherwise, Simulink might
attempt to automatically break the algebraic
loops, which can impact the execution order of
the blocks.

Minimize algebraic loop is set to none. Set Minimize algebraic loop on the
Diagnostics > Solver pane of the
Configuration Parameters dialog box to
error or warning. Otherwise, Simulink

3-163

3 Model Advisor Checks

Condition Recommended Action

might attempt to automatically break the
algebraic loops for reference models and atomic
subsystems, which can impact the execution
order for those models or subsystems.

Inf or NaN block output is set to none,
which can result in numerical exceptions in the
generated code.

Set Inf or NaN block output on the
Diagnostics > Data Validity > Signals pane
of the Configuration Parameters dialog box to
error or warning.

Duplicate data store names is set to none,
which can result in nonunique variable naming
in the generated code.

Set Duplicate data store names on the
Diagnostics > Data Validity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

Unconnected block input ports is set to
none, which prevents code generation.

Set Unconnected block input ports on the
Diagnostics > Data Validity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

Unconnected block output ports is set to
none, which can lead to dead code.

Set Unconnected block output ports on
the Diagnostics > Data Validity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

Unconnected line is set to none, which
prevents code generation.

Set Unconnected line on the
Diagnostics > Connectivity > Signals
pane of the Configuration Parameters dialog
box to error or warning.

Unspecified bus object at root Outport
block is set to none, which can lead to an
unspecified interface if the model is referenced
from another model.

Set Unspecified bus object
at root Outport block on the
Diagnostics > Connectivity > Buses
pane of the Configuration Parameters dialog
box to error or warning.

Mux blocks used to create bus signals is
set to none, which can lead to an unintended
bus being created in the model.

Set Mux blocks used to create bus signals
on the Diagnostics > Connectivity > Buses
pane of the Configuration Parameters dialog
box to error or warning.

3-164

MathWorks® Automotive Advisory Board Checks

Condition Recommended Action

Element name mismatch is set to none,
which can lead to an unintended interface in
the generated code.

Set Element name mismatch on the
Diagnostics > Connectivity > Buses pane
of the Configuration Parameters dialog box to
error or warning.

Invalid function-call connection is set
to none, which can lead to an error in the
operation of the generated code.

Set Invalid function-call connection on the
Diagnostics > Connectivity > Function
Calls pane of the Configuration Parameters
dialog box to error or warning, since this
condition can lead to an error in the operation
of the generated code.

See Also
MAAB guideline jc_0021: Model diagnostic settings

3-165

3 Model Advisor Checks

Check the display attributes of block names
Check the display attributes of subsystem and block names.

Description
Subsystem and block names should be displayed when providing descriptive
information. The names should not be displayed if the block function is
known from its appearance.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Name is obvious. Hide name by clearing
Diagram > Format > Show
Block Name.

Name is not descriptive. Modify name to be more descriptive
or hide name by clearing
Diagram > Format > Show
Block Name.

Name is not displayed. Display name by selecting
Diagram > Format > Show
Block Name.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline jc_0061: Display of block names

3-166

MathWorks® Automotive Advisory Board Checks

Check display for port blocks
Check the Icon display setting for Inport and Outport blocks.

Description
The Icon display setting is required.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The Icon display setting is not set. Set the Icon display to Port
number for the specified Inport and
Outport blocks.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline jc_0081: Icon display for Port block

3-167

3 Model Advisor Checks

Check subsystem names
Check whether subsystem block names include invalid characters.

Description
The names of all subsystem blocks are checked for invalid characters.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The subsystem name contains illegal
characters.

Rename the subsystem. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The subsystem name starts with a
number.

Rename the subsystem.

The subsystem name starts with an
underscore ("_").

Rename the subsystem.

The subsystem name ends with an
underscore ("_").

Rename the subsystem.

The subsystem name has consecutive
underscores.

Rename the subsystem.

The subsystem name has blank
spaces.

Rename the subsystem.

Capabilities and Limitations
• You can run this check on your library models.

• The check does not report invalid characters in subsystem names for:

- Virtual subsystems

- Atomic subsystems with Function Packaging set to Inline

3-168

MathWorks® Automotive Advisory Board Checks

Tips
Use underscores to separate parts of a subsystem name instead of spaces.

See Also
MAAB guideline jc_0201: Usable characters for Subsystem names

3-169

3 Model Advisor Checks

Check port block names
Check whether Inport and Outport block names include invalid characters.

Description
The names of all Inport and Outport blocks are checked for invalid characters.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The block name contains illegal
characters.

Rename the block. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The block name starts with a
number.

Rename the block.

The block name starts with an
underscore ("_").

Rename the block.

The block name ends with an
underscore ("_").

Rename the block.

The block name has consecutive
underscores.

Rename the block.

The block name has blank spaces. Rename the block.

Capabilities and Limitations
You can run this check on your library models.

Tips
Use underscores to separate parts of a block name instead of spaces.

See Also
MAAB guideline jc_0211: Usable characters for Inport blocks and Outport
blocks

3-170

MathWorks® Automotive Advisory Board Checks

Check character usage in signal labels
Check whether signal line names include invalid characters.

Description
The names of all signal lines are checked for invalid characters.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The signal line name contains illegal
characters.

Rename the signal line. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The signal line name starts with a
number.

Rename the signal line.

The signal line name starts with an
underscore ("_").

Rename the signal line.

The signal line name ends with an
underscore ("_").

Rename the signal line.

The signal line name has consecutive
underscores.

Rename the signal line.

The signal line name has blank
spaces.

Rename the signal line.

The signal line name has control
characters.

Rename the signal line.

Capabilities and Limitations
You can run this check on your library models.

Tips
Use underscores to separate parts of a signal line name instead of spaces.

3-171

3 Model Advisor Checks

See Also
MAAB guideline jc_0221: Usable characters for signal line names

3-172

MathWorks® Automotive Advisory Board Checks

Check character usage in block names
Check whether block names include invalid characters.

Description
The block names are checked for invalid characters.

This guideline does not apply to subsystem blocks.

Available with Simulink Verification and Validation.

Prerequisite
A prerequisite MAAB guideline for this check is jc_0201: Usable characters
for Subsystem names.

Results and Recommended Actions

Condition Recommended Action

The block name contains illegal
characters.

Rename the block. Allowed
characters include a–z, A–Z, 0–9,
underscore (_), and period (.).

The block name starts with a
number.

Rename the block.

The block name has blank spaces. Rename the block.

The block name has double byte
characters.

Rename the block.

Capabilities and Limitations
You can run this check on your library models.

Tips
Carriage returns are allowed in block names.

3-173

3 Model Advisor Checks

See Also
MAAB guideline jc_0231: Usable characters for block names

3-174

MathWorks® Automotive Advisory Board Checks

Check Trigger and Enable block names
Check Trigger and Enable block port names.

Description
Block port names should match the name of the signal triggering the
subsystem.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Trigger block does not match the
name of the signal to which it is
connected.

Match Trigger block names to the
connecting signal.

Enable block does not match the
name of the signal to which it is
connected.

Match Enable block names to the
connecting signal.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline jc_0281: Naming of Trigger Port block and Enable Port block

3-175

3 Model Advisor Checks

Check for Simulink diagrams using nonstandard
display attributes
Check model appearance setting attributes.

Description
Model appearance settings are required to conform to the guidelines when
the model is released.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The toolbar is not visible. Select View > Toolbar.

Wide Nonscalar Lines is cleared. Select Display > Signals &
Ports > Wide Nonscalar Lines.

Viewer Indicators is cleared. Select Display > Signals &
Ports > Viewer Indicators.

Testpoint Indicators is cleared. Select Display > Signals &
Ports > Testpoint & Logging
Indicators.

Port Data Types is selected. Clear Display > Signals &
Ports > Port Data Types.

Storage Class is selected. Clear Display > Signals &
Ports > Storage Class.

Signal Dimensions is selected. Clear Display > Signals &
Ports > Signal Dimensions.

Model Browser is selected. Clear View > Model Browser
> Show Model Browser.

Sorted Execution Order is
selected.

Clear Display > Blocks > Sorted
Execution Order.

Model Block Version is selected. Clear Display > Blocks > Block
Version for Referenced Models.

3-176

MathWorks® Automotive Advisory Board Checks

Condition Recommended Action

Model Block I/O Mismatch is
selected.

Clear Display > Blocks > Block
I/O Mismatch for Referenced
Models.

Library Links is set to Disabled,
User Defined or All.

Select Display > Library
Links > None.

Linearization Indicators is
cleared.

Select Display > Signals &
Ports > Linearization Indicators.

Block backgrounds are not white. Blocks should have black
foregrounds with white backgrounds.
Click the specified block and
select Format > Foreground
Color > Black and
Format > Background
Color > White.

Diagrams do not have white
backgrounds.

Select
Diagram > Format > Canvas
Color > White.

Diagrams do not have zoom factor
set to 100%.

Select View > Zoom > Normal
(100%).

Action Results
ClickingModify updates the display attributes to conform to the guideline.

See Also
MAAB guideline na_0004: Simulink model appearance

3-177

3 Model Advisor Checks

Check MATLAB code for global variables
Check for global variables in MATLAB code.

Description
Verifies that global variables are not used in any of the following:

• MATLAB code in MATLAB Function blocks

• MATLAB functions defined in Stateflow charts

• Called MATLAB functions

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Global variables are used in one or
more of the following:
• MATLAB code in MATLAB
Function blocks

• MATLAB functions defined in
Stateflow charts

• Called MATLAB functions

Replace global variables with
signal lines, function arguments, or
persistent data.

See Also
MAAB guideline na_0024: Global Variables

3-178

MathWorks® Automotive Advisory Board Checks

Check visibility of block port names
Check the visibility of port block names.

Description
An organization applying the MAAB guidelines must select one of the
following alternatives to enforce:

• The name of port blocks are not hidden.

• The name of port blocks must be hidden.

Available with Simulink Verification and Validation.

Input Parameters

All Port names should be shown (Format/Show Name)
Select this check box if all ports should show the name, including
subsystems.

Results and Recommended Actions

Condition Recommended Action

Blocks do not show their name and
the All Port names should be
shown (Format/Show Name)
check box is selected.

Change the format of the specified
blocks to show names according to
the input requirement.

Blocks show their name and the All
Port names should be shown
(Format/Show Name) check box is
cleared.

Change the format of the specified
blocks to hide names according to
the input requirement.

Subsystem blocks do not show their
port names.

Set the subsystem parameter Show
port labels to a value other than
none.

Subsystem blocks show their port
names.

Set the subsystem parameter Show
port labels to none.

3-179

3 Model Advisor Checks

Capabilities and Limitations

• You can run this check on your library models.

• This check does not look in masked subsystems.

See Also
MAAB guideline na_0005: Port block name visibility in Simulink models

3-180

MathWorks® Automotive Advisory Board Checks

Check orientation of Subsystem blocks
Check the orientation of subsystem blocks.

Description
Subsystem inputs must be located on the left side of the block, and outputs
must be located on the right side of the block.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Subsystem blocks are not using the
right orientation

Rotate the subsystem so that inputs
are on the left side of block and
outputs are on the right side of the
block.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline jc_0111: Direction of Subsystem

3-181

3 Model Advisor Checks

Check usage of Relational Operator blocks
Check the position of Constant blocks used in Relational Operator blocks.

Description
When the relational operator is used to compare a signal to a constant value,
the constant input should be the second, lower input.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Relational Operator blocks have a
Constant block on the first, upper
input.

Move the Constant block to the
second, lower input.

Capabilities and Limitations
You can run this check on your library models.

See Also
MAAB guideline jc_0131: Use of Relational Operator block

3-182

MathWorks® Automotive Advisory Board Checks

Check usage of Switch blocks
Check usage of Switch blocks.

Description
This check verifies that the Switch block’s control input (the second input)
is a Boolean value and that the block is configured to pass the first input
when the control input is nonzero.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The Switch block’s control input
(second input) is not a Boolean value.

Change the data type of the control
input to Boolean.

The Switch block is not configured to
pass the first input when the control
input is nonzero.

Set the block parameter Criteria
for passing first input to u2 ~=0.

See Also

• MAAB guideline jc_0141: Use of the Switch block

• Switch block

3-183

3 Model Advisor Checks

Check usage of buses and Mux blocks
Check usage of buses and Mux blocks.

Description
This check verifies the usage of buses and Mux blocks.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The individual scalar input signals
for a Mux block do not have
common functionality, data types,
dimensions, and units.

Modify the scalar input signals such
that the specifications match.

The output of a Mux block is not a
vector.

Change the output of the Mux block
to a vector.

All inputs to a Mux block are not
scalars.

Make sure that all input signals to
Mux blocks are scalars.

The input for a Bus Selector block is
not a bus signal.

Make sure that the input for all Bus
Selector blocks is a bus signal.

See Also

• MAAB guideline na_0010: Grouping data flows into signals

• “Composite Signals”

3-184

MathWorks® Automotive Advisory Board Checks

Check for bitwise operations in Stateflow charts
Identify bitwise operators (&, |, and ^) in Stateflow charts. If you select
Enable C-bit operations for a chart, only bitwise operators in expressions
containing Boolean data types are reported. Otherwise, all bitwise operators
are reported for the chart.

Description
Do not use bitwise operators in Stateflow charts, unless you enable bitwise
operations.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Stateflow charts with Enable C-bit
operations selected use bitwise
operators (&, |, and ^) in expressions
containing Boolean data types.

Do not use Boolean data types in the
specified expressions.

The Model Advisor could not
determine the data types in
expressions with bitwise operations.

To allow Model Advisor to
determine the data types, consider
explicitly typecasting the specified
expressions.

Stateflow charts with Enable C-bit
operations cleared use bitwise
operators (&, |, and ^).

To fix this issue, do either of the
following:
• Modify the expressions to replace
bitwise operators.

• If not using Boolean data
types, consider enabling bitwise
operations. In the Chart
properties dialog box, select
Enable C-bit operations.

Capabilities and Limitations
This check does not support charts that use MATLAB as the action language.

3-185

3 Model Advisor Checks

See Also

• MAAB guideline na_0001: Bitwise Stateflow operators

• “Binary and Bitwise Operations” in the Stateflow documentation

3-186

MathWorks® Automotive Advisory Board Checks

Check for comparison operations in Stateflow charts
Identify comparison operations with different data types in Stateflow objects.

Description
Comparisons should be made between variables of the same data types.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Comparison operations with
different data types were found.

Revisit the specified operations to
avoid comparison operations with
different data types.

The Model Advisor could not
determine the data types in
expressions with comparison
operations.

To allow Model Advisor to
determine the data types, consider
explicitly typecasting the specified
expressions.

Capabilities and Limitations
This check does not support charts that use MATLAB as the action language.

See Also
MAAB guideline na_0013: Comparison operation in Stateflow

3-187

3 Model Advisor Checks

Check for unary minus operations on unsigned
integers in Stateflow charts
Identify unary minus operations applied to unsigned integers in Stateflow
objects.

Description
Do not perform unary minus operations on unsigned integers in Stateflow
objects.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Unary minus operations are applied
to unsigned integers in Stateflow
objects.

Modify the specified objects to
remove dependency on unary minus
operations.

The Model Advisor could not
determine the data types in
expressions with unary minus
operations.

To allow Model Advisor to
determine the data types, consider
explicitly typecasting the specified
expressions.

Capabilities and Limitations
This check does not support charts that use MATLAB as the action language.

See Also
MAAB guideline jc_0451: Use of unary minus on unsigned integers in
Stateflow

3-188

MathWorks® Automotive Advisory Board Checks

Check for equality operations between floating-point
expressions in Stateflow charts
Identify equal to operations (==) in expressions where at least one side of the
expression is a floating-point variable or constant.

Description
Do not use equal to operations with floating-point data types. You can use
equal to operations with integer data types.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Expressions use equal to operations
(==) where at least one side of
the expression is a floating-point
variable or constant.

Modify the specified expressions to
avoid equal to operations between
floating-point expressions. If an
equal to operation is required, a
margin of error should be defined
and used in the operation.

The Model Advisor could not
determine the data types in
expressions with equality operations.

To allow Model Advisor to
determine the data types, consider
explicitly typecasting the specified
expressions.

Capabilities and Limitations
This check does not support charts that use MATLAB as the action language.

See Also
MAAB guideline jc_0481: Use of hard equality comparisons for floating point
numbers in Stateflow

3-189

3 Model Advisor Checks

Check input and output settings of MATLAB Function
blocks
Identify MATLAB Function blocks that have inputs, outputs or parameters
with inherited complexity or data type properties.

Description
The check identifies MATLAB Function blocks with inherited complexity or
data type properties. A results table provides links to MATLAB Function
blocks that do not pass the check, along with conditions triggering the
warning.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

MATLAB Function blocks have
inherited interfaces.

Explicitly define complexity and data
type properties for inports, outports,
and parameters of MATLAB
Function block identified in the
results.

If applicable, using the “MATLAB
Function Block Editor”, make the
following modifications in the “Ports
and Data Manager”:

• Change Complexity from
Inherited to On or Off.

• Change Type from Inherit:
Same as Simulink to an explicit
type.

• Change Size from 1
(Inherited) to an explicit
size.

3-190

MathWorks® Automotive Advisory Board Checks

Condition Recommended Action

In the results table, Compiled
Value provides suggestions for
the actual values after the model
compiles. If a MATLAB Function
block is defined within a library,
explicitly define the interface in the
library rather than in the referencing
model. If your model has multiple
instances of MATLAB Function
blocks defined in a library block,
and the instances have different
interface properties, consider using
multiple library blocks.

See Also
MAAB guideline na_0034: MATLAB Function block input/output settings

3-191

3 Model Advisor Checks

Check MATLAB Function block metrics
Display complexity and code metrics for MATLAB Function blocks and
external MATLAB functions. Report metric violations.

Description
This check provides complexity and code metrics for MATLAB Function
blocks and external MATLAB functions. The check additionally reports
metric violations.

A results table provides links to MATLAB Function blocks and external
MATLAB functions that violate the complexity input parameters.

Available with Simulink Verification and Validation.

Input Parameters

Maximum effective lines of code per function
Provide the maximum effective lines of code per function. Effective
lines do not include empty lines, comment lines, or lines with a function
end keyword.

Minimum density of comments
Provide minimum density of comments. Density is ratio of comment
lines to total lines of code.

Maximum cyclomatic complexity per function
Provide maximum cyclomatic complexity per function. Cyclomatic
complexity is the number of linearly independent paths through the
source code.

3-192

MathWorks® Automotive Advisory Board Checks

Results and Recommended Actions

Condition Recommended Action

MATLAB Function blocks or
external MATLAB functions violate
the complexity input parameters.

For the MATLAB Function block or
external MATLAB function:

• If effective lines of code is too
high, further divide the MATLAB
function.

• If comment density is too low, add
comment lines.

• If cyclomatic complexity per
function is too high, further divide
the MATLAB function.

Capabilities and Limitations
You can run this check on your library models.

See Also

• na_0016: Source lines of MATLAB Functions

• na_0018: Number of nested if/else and case statement

3-193

3 Model Advisor Checks

Check for mismatches between names of Stateflow
ports and associated signals
Check for mismatches between Stateflow ports and associated signal names.

Description
The name of Stateflow input and output should be the same as the
corresponding signal.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Signals have names that differ
from those of their corresponding
Stateflow ports.

Change the names of either the
signals or the Stateflow ports.

See Also
MAAB guideline db_0123: Stateflow port names

3-194

MathWorks® Automotive Advisory Board Checks

Check scope of From and Goto blocks
Check the scope of From and Goto blocks.

Description
You can use global scope for controlling flow. However, From and Goto blocks
must use local scope for signal flows.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

From and Goto blocks are not
configured with local scope.

• Make sure the ports are connected

• Change the scope of the specified
blocks to local.

See Also
MAAB guideline na_0011: Scope of Goto and From blocks

3-195

3 Model Advisor Checks

Requirements Consistency Checks

In this section...

“Identify requirement links with missing documents” on page 3-197

“Identify requirement links that specify invalid locations within documents”
on page 3-198

“Identify selection-based links having descriptions that do not match their
requirements document text” on page 3-199

“Identify requirement links with path type inconsistent with preferences”
on page 3-201

3-196

Requirements Consistency Checks

Identify requirement links with missing documents
Verify that requirements link to existing documents.

Description
You used the Requirements Management Interface (RMI) to associate a
design requirements document with a part of your model design and the
interface cannot find the specified document.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The requirements document
associated with a part of your
model design is not accessible at the
specified location.

Open the Requirements dialog
box and fix the path name of the
requirements document or move the
document to the specified location.

Tips
If your model has links to a DOORS requirements document, to run this
check, the DOORS software must be open and you must be logged in.

See Also
“Maintenance of Requirements Links”

3-197

3 Model Advisor Checks

Identify requirement links that specify invalid
locations within documents
Verify that requirements link to valid locations (e.g., bookmarks, line
numbers, anchors) within documents.

Description
You used the Requirements Management Interface (RMI) to associate a
location in a design requirements document (a bookmark, line number, or
anchor) with a part of your model design and the interface cannot find the
specified location in the specified document.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The location in the requirements
document associated with a part of
your model design is not accessible.

Open the Requirements dialog box
and fix the location reference within
the requirements document.

Tips
If your model has links to a DOORS requirements document, to run this
check, the DOORS software must be open and you must be logged in.

If your model has links to a Microsoft Word or Microsoft Excel document, to
run this check, those applications must be closed on your computer.

See Also
“Maintenance of Requirements Links”

3-198

Requirements Consistency Checks

Identify selection-based links having descriptions
that do not match their requirements document text
Verify that descriptions of selection-based links use the same text found in
their requirements documents.

Description
You used selection-based linking of the Requirements Management Interface
(RMI) to label requirements in the model’s Requirements menu with text
that appears in the corresponding requirements document. This check helps
you manage traceability by identifying requirement descriptions in the menu
that are not synchronized with text in the documents.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

Selection-based links have
descriptions that differ from
their corresponding selections in the
requirements documents.

If the difference reflects a change in
the requirements document, click
Update in the Model Advisor results
to replace the current description
in the selection-based link with
the text from the requirements
document (the external description).
Alternatively, you can right-click
the object in the model window,
select Edit/Add Links from the
Requirements menu, and use
the Requirements dialog box that
appears to synchronize the text.

Tips
If your model has links to a DOORS requirements document, to run this
check, the DOORS software must be open and you must be logged in.

3-199

3 Model Advisor Checks

If your model has links to a Microsoft Word or Microsoft Excel document, to
run this check, those applications must be closed on your computer.

See Also
“Maintenance of Requirements Links”

3-200

Requirements Consistency Checks

Identify requirement links with path type inconsistent
with preferences
Check that requirement paths are of the type selected in the preferences.

Description
You are using the Requirements Management Interface (RMI) and the paths
specifying the location of your requirements documents differ from the file
reference type set as your preference.

Available with Simulink Verification and Validation.

Results and Recommended Actions

Condition Recommended Action

The paths indicating the location
of requirements documents use
a file reference type that differs
from the preference specified in
the Requirements Settings dialog
box, on the Selection Linking
tab.

Change the preferred document file
reference type or the specified paths by
doing one of the following:

• Click Fix to change the current path
to the valid path.

• In the model window, select
Analysis > Requirements > Settings,
select the Selection Linking
tab, and change the value for the
Document file reference option.

Linux Check for Absolute Paths
On Linux® systems, this check is named Identify requirement links with
absolute path type. The check reports warnings for requirements links that
use an absolute path.

The recommended action is:

1 Right-click the model object and select Requirements > Edit/Add Links.

3-201

3 Model Advisor Checks

2 Modify the path in the Document field to use a path relative to the current
working folder or the model location.

See Also
“Maintenance of Requirements Links”

3-202

	toc
	Functions — Alphabetical List
	Block Reference
	Model Advisor Checks
	Simulink Verification and Validation Checks
	Simulink Verification and Validation Checks Overview
	See Also

	Modeling Standards Checks Overview
	See Also

	Modeling Standards for MAAB Overview
	See Also

	Naming Conventions Overview
	See Also

	Model Architecture Overview
	See Also

	Model Configuration Options Overview
	See Also

	Simulink Overview
	See Also

	Stateflow Overview
	See Also

	MATLAB Functions Overview
	See Also

	DO-178C/DO-331 Checks
	DO-178C/DO-331 Checks Overview
	See Also

	Check safety-related optimization settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for solvers
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for sample time
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for signal data
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for parameters
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for data used for debug
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for data store memory
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for type conversions
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for signal connectivity
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for bus connectivity
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings that apply to function-
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for compatibility
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for model initializatio
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for model referencing
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related model referencing settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related code generation settings
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check safety-related diagnostic settings for saving
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check for blocks that do not link to requirements
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Tip
	See Also

	Check usage of Math blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Tips
	See Also

	Check state machine type of Stateflow charts
	Description
	Input Parameters
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check Stateflow charts for ordering of states and transitions
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Action Results
	See Also

	Check Stateflow debugging options
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check usage of lookup table blocks
	Description
	Results and Recommended Actions
	Action Results
	Capabilities and Limitations
	See Also

	Check MATLAB Code Analyzer messages
	Description
	Results and Recommended Actions
	See Also

	Check MATLAB code for global variables
	Description
	Results and Recommended Actions
	See Also

	Check for inconsistent vector indexing methods
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for MATLAB Function block interfaces with inherited proper
	Description
	Results and Recommended Actions
	See Also

	Check MATLAB Function block metrics
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Check for blocks not recommended for C/C++ production code deplo
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check Stateflow charts for uniquely defined data objects
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check usage of Math Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Routing blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Logic and Bit Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Ports and Subsystems blocks
	Description
	Results and Recommended Actions
	See Also

	Display model version information
	Description
	Results and Recommended Actions
	See Also

	IEC 61508, ISO 26262, and EN 50128 Checks
	IEC 61508, ISO 26262, and EN 50128 Checks Overview
	Tips
	See Also

	Display model metrics and complexity report
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for unconnected objects
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for root Inports with missing properties
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check for MATLAB Function block interfaces with inherited proper
	Description
	Results and Recommended Actions
	See Also

	Check MATLAB Function block metrics
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Check for root Inports with missing range definitions
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for root Outports with missing range definitions
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for blocks not recommended for C/C++ production code deplo
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check usage of Stateflow constructs
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check state machine type of Stateflow charts
	Description
	Input Parameters
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for model objects that do not link to requirements
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Tip
	See Also

	Check for inconsistent vector indexing methods
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check MATLAB Code Analyzer messages
	Description
	Results and Recommended Actions
	See Also

	Check MATLAB code for global variables
	Description
	Results and Recommended Actions
	See Also

	Check usage of Math Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Routing blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Logic and Bit Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Ports and Subsystems blocks
	Description
	Results and Recommended Actions
	See Also

	Display configuration management data
	Description
	Results and Recommended Actions
	See Also

	MathWorks Automotive Advisory Board Checks
	MathWorks Automotive Advisory Board Checks Overview
	See Also

	Check font formatting
	Description
	Input Parameters
	Results and Recommended Actions
	Capabilities and Limitations
	Action Results
	See Also

	Check Transition orientations in flowcharts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for nondefault block attributes
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Tip
	See Also

	Check signal line labels
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for propagated signal labels
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check default transition placement in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check return value assignments of graphical functions in Statefl
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check entry formatting in State blocks in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check usage of return values from a graphical function in Statef
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for pointers in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for event broadcasts in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check transition actions in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for MATLAB expressions in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for indexing in blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check file names
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check folder names
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for prohibited blocks in discrete controllers
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for prohibited sink blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check positioning and configuration of ports
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for matching port and signal names
	Description
	Prerequisite
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check whether block names appear below blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for mixing basic blocks and subsystems
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for unconnected ports and signal lines
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check position of Trigger and Enable blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check usage of tunable parameters in blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check Stateflow data objects with local scope
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for Strong Data Typing with Simulink I/O
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check usage of exclusive and default states in state machines
	Description
	Prerequisite
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check Implement logic signals as Boolean data (vs. double)
	Description
	Prerequisite
	Results and Recommended Actions
	See Also

	Check model diagnostic parameters
	Description
	Results and Recommended Actions
	See Also

	Check the display attributes of block names
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check display for port blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check subsystem names
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Tips
	See Also

	Check port block names
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Tips
	See Also

	Check character usage in signal labels
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	Tips
	See Also

	Check character usage in block names
	Description
	Prerequisite
	Results and Recommended Actions
	Capabilities and Limitations
	Tips
	See Also

	Check Trigger and Enable block names
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for Simulink diagrams using nonstandard display attributes
	Description
	Results and Recommended Actions
	Action Results
	See Also

	Check MATLAB code for global variables
	Description
	Results and Recommended Actions
	See Also

	Check visibility of block port names
	Description
	Input Parameters
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check orientation of Subsystem blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check usage of Relational Operator blocks
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check usage of Switch blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of buses and Mux blocks
	Description
	Results and Recommended Actions
	See Also

	Check for bitwise operations in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for comparison operations in Stateflow charts
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for unary minus operations on unsigned integers in Statefl
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for equality operations between floating-point expressions
	Description
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check input and output settings of MATLAB Function blocks
	Description
	Results and Recommended Actions
	See Also

	Check MATLAB Function block metrics
	Description
	Input Parameters
	Results and Recommended Actions
	Capabilities and Limitations
	See Also

	Check for mismatches between names of Stateflow ports and associ
	Description
	Results and Recommended Actions
	See Also

	Check scope of From and Goto blocks
	Description
	Results and Recommended Actions
	See Also

	Requirements Consistency Checks
	Identify requirement links with missing documents
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify requirement links that specify invalid locations within
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify selection-based links having descriptions that do not m
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify requirement links with path type inconsistent with pref
	Description
	Results and Recommended Actions
	Linux Check for Absolute Paths
	See Also

